These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15599082)

  • 21. EEG effects of motion sickness induced in a dynamic virtual reality environment.
    Lin CT; Chuang SW; Chen YC; Ko LW; Liang SF; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3872-5. PubMed ID: 18002844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical predictors of cybersickness in virtual reality (VR) among highly stressed people.
    Kim H; Kim DJ; Chung WH; Park KA; Kim JDK; Kim D; Kim K; Jeon HJ
    Sci Rep; 2021 Jun; 11(1):12139. PubMed ID: 34108520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation for VR glasses system user experience: The influence factors of interactive operation and motion sickness.
    Yu M; Zhou R; Wang H; Zhao W
    Appl Ergon; 2019 Jan; 74():206-213. PubMed ID: 30487101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VR Sickness Adaptation With Ramped Optic Flow Transfers From Abstract To Realistic Environments.
    Adhanom I; Halow S; Folmer E; MacNeilage P
    Front Virtual Real; 2022 May; 3():. PubMed ID: 36873792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Subjective sensations indicating simulator sickness and fatigue after exposure to virtual reality].
    Malińska M; Zuzewicz K; Bugajska J; Grabowski A
    Med Pr; 2014; 65(3):361-71. PubMed ID: 25230565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation.
    Kiryu T; So RH
    J Neuroeng Rehabil; 2007 Sep; 4():34. PubMed ID: 17894857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sick Moves! Motion Parameters as Indicators of Simulator Sickness.
    Feigl T; Roth D; Gradl S; Wirth M; Latoschik ME; Eskofier BM; Philippsen M; Mutschler C
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3146-3157. PubMed ID: 31425036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding.
    Aldaba CN; White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4175-4178. PubMed ID: 29060817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postural instability induced by virtual reality exposure: development of a certification protocol.
    Kennedy RS; Stanney KM
    Int J Hum Comput Interact; 1996; 8(1):25-47. PubMed ID: 11540107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning from Deep Stereoscopic Attention for Simulator Sickness Prediction.
    Du M; Cui H; Wang Y; Duh HB
    IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1415-1423. PubMed ID: 34582350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments.
    Draper MH; Viire ES; Furness TA; Gawron VJ
    Hum Factors; 2001; 43(1):129-46. PubMed ID: 11474759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Motion Direction and Eccentricity on Vection, VR Sickness and Head Movements in Virtual Reality.
    Pöhlmann KMT; Föcker J; Dickinson P; Parke A; O'Hare L
    Multisens Res; 2021 Apr; ():1-40. PubMed ID: 33882451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of navigation speed on motion sickness caused by an immersive virtual environment.
    So RH; Lo WT; Ho AT
    Hum Factors; 2001; 43(3):452-61. PubMed ID: 11866200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing a virtual reality-based methodology for people with dementia: a feasibility study.
    Flynn D; van Schaik P; Blackman T; Femcott C; Hobbs B; Calderon C
    Cyberpsychol Behav; 2003 Dec; 6(6):591-611. PubMed ID: 14756925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey.
    Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA
    Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.
    Nakajima S; Ino S; Ifukube T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3044-7. PubMed ID: 18002636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studying the Effects of Congruence of Auditory and Visual Stimuli on Virtual Reality Experiences.
    Kim H; Lee IK
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2080-2090. PubMed ID: 35167477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.