These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 1559951)

  • 1. Physiological effects of tapering in highly trained athletes.
    Shepley B; MacDougall JD; Cipriano N; Sutton JR; Tarnopolsky MA; Coates G
    J Appl Physiol (1985); 1992 Feb; 72(2):706-11. PubMed ID: 1559951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of tapering on strength performance in trained athletes.
    Gibala MJ; MacDougall JD; Sale DG
    Int J Sports Med; 1994 Nov; 15(8):492-7. PubMed ID: 7890463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of taper on performance in distance runners.
    Houmard JA; Scott BK; Justice CL; Chenier TC
    Med Sci Sports Exerc; 1994 May; 26(5):624-31. PubMed ID: 8007812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological changes associated with the pre-event taper in athletes.
    Mujika I; Padilla S; Pyne D; Busso T
    Sports Med; 2004; 34(13):891-927. PubMed ID: 15487904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle adaptation: training twice every second day vs. training once daily.
    Hansen AK; Fischer CP; Plomgaard P; Andersen JL; Saltin B; Pedersen BK
    J Appl Physiol (1985); 2005 Jan; 98(1):93-9. PubMed ID: 15361516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological responses to a 6-d taper in middle-distance runners: influence of training intensity and volume.
    Mujika I; Goya A; Padilla S; Grijalba A; Gorostiaga E; Ibañez J
    Med Sci Sports Exerc; 2000 Feb; 32(2):511-7. PubMed ID: 10694140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.
    Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M
    J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.
    Terada S; Yokozeki T; Kawanaka K; Ogawa K; Higuchi M; Ezaki O; Tabata I
    J Appl Physiol (1985); 2001 Jun; 90(6):2019-24. PubMed ID: 11356760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of an increase in intensity during tapering on 1500-m running performance.
    Spilsbury KL; Nimmo MA; Fudge BW; Pringle JSM; Orme MW; Faulkner SH
    Appl Physiol Nutr Metab; 2019 Jul; 44(7):783-790. PubMed ID: 30608885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.
    Moreira JB; Bechara LR; Bozi LH; Jannig PR; Monteiro AW; Dourado PM; Wisløff U; Brum PC
    J Appl Physiol (1985); 2013 Apr; 114(8):1029-41. PubMed ID: 23429866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate balance in competitive runners during successive days of intense training.
    Kirwan JP; Costill DL; Mitchell JB; Houmard JA; Flynn MG; Fink WJ; Beltz JD
    J Appl Physiol (1985); 1988 Dec; 65(6):2601-6. PubMed ID: 3215861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance.
    Levine BD; Stray-Gundersen J
    J Appl Physiol (1985); 1997 Jul; 83(1):102-12. PubMed ID: 9216951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise.
    Madsen K; Pedersen PK; Djurhuus MS; Klitgaard NA
    J Appl Physiol (1985); 1993 Oct; 75(4):1444-51. PubMed ID: 8282588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle.
    Kirwan JP; Costill DL; Flynn MG; Neufer PD; Fink WJ; Morse WM
    Int J Sports Med; 1990 Dec; 11(6):479-83. PubMed ID: 2286488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile and biochemical properties of diaphragm: effects of exercise training and fatigue.
    Metzger JM; Fitts RH
    J Appl Physiol (1985); 1986 May; 60(5):1752-8. PubMed ID: 2940218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No evidence of oxidant stress during high-intensity rowing training.
    Dernbach AR; Sherman WM; Simonsen JC; Flowers KM; Lamb DR
    J Appl Physiol (1985); 1993 May; 74(5):2140-5. PubMed ID: 8335541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.
    Burgomaster KA; Heigenhauser GJ; Gibala MJ
    J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle respiratory capacity, endurance, and glycogen utilization.
    Fitts RH; Booth FW; Winder WW; Holloszy JO
    Am J Physiol; 1975 Apr; 228(4):1029-33. PubMed ID: 165725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training theory and taper: validation in triathlon athletes.
    Banister EW; Carter JB; Zarkadas PC
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):182-91. PubMed ID: 10029340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.