These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15599512)

  • 1. Higher gene duplicabilities for metabolic proteins than for nonmetabolic proteins in yeast and E. coli.
    Marland E; Prachumwat A; Maltsev N; Gu Z; Li WH
    J Mol Evol; 2004 Dec; 59(6):806-14. PubMed ID: 15599512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene duplicability-connectivity-complexity across organisms and a neutral evolutionary explanation.
    Zhu Y; Du P; Nakhleh L
    PLoS One; 2012; 7(9):e44491. PubMed ID: 22984517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
    Jardine O; Gough J; Chothia C; Teichmann SA
    Genome Res; 2002 Jun; 12(6):916-29. PubMed ID: 12045145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in gene duplicability may explain the difference in overall structure of protein-protein interaction networks among eukaryotes.
    Hase T; Niimura Y; Tanaka H
    BMC Evol Biol; 2010 Nov; 10():358. PubMed ID: 21087510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does negative auto-regulation increase gene duplicability?
    Warnecke T; Wang GZ; Lercher MJ; Hurst LD
    BMC Evol Biol; 2009 Aug; 9():193. PubMed ID: 19664220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher duplicability of less important genes in yeast genomes.
    He X; Zhang J
    Mol Biol Evol; 2006 Jan; 23(1):144-51. PubMed ID: 16151181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of gene duplicability during the evolution of protein interaction network.
    D'Antonio M; Ciccarelli FD
    PLoS Comput Biol; 2011 Apr; 7(4):e1002029. PubMed ID: 21490719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general tendency for conservation of protein length across eukaryotic kingdoms.
    Wang D; Hsieh M; Li WH
    Mol Biol Evol; 2005 Jan; 22(1):142-7. PubMed ID: 15371528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between gene duplicability and diversifiability in the topology of biochemical networks.
    Guo Z; Jiang W; Lages N; Borcherds W; Wang D
    BMC Genomics; 2014 Jul; 15(1):577. PubMed ID: 25005725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene complexity and gene duplicability.
    He X; Zhang J
    Curr Biol; 2005 Jun; 15(11):1016-21. PubMed ID: 15936271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organismal complexity, protein complexity, and gene duplicability.
    Yang J; Lusk R; Li WH
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15661-5. PubMed ID: 14660792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae.
    Maury J; Asadollahi MA; Møller K; Schalk M; Clark A; Formenti LR; Nielsen J
    FEBS Lett; 2008 Dec; 582(29):4032-8. PubMed ID: 18996117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein function, connectivity, and duplicability in yeast.
    Prachumwat A; Li WH
    Mol Biol Evol; 2006 Jan; 23(1):30-9. PubMed ID: 16120800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential duplication in the sparse part of yeast protein interaction network.
    Li L; Huang Y; Xia X; Sun Z
    Mol Biol Evol; 2006 Dec; 23(12):2467-73. PubMed ID: 16980576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on the evolution of metabolic networks of unicellular translationally biased organisms from transcriptomic data and sequence analysis.
    Carbone A; Madden R
    J Mol Evol; 2005 Oct; 61(4):456-69. PubMed ID: 16187158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein complexity, gene duplicability and gene dispensability in the yeast genome.
    Lin YS; Hwang JK; Li WH
    Gene; 2007 Jan; 387(1-2):109-17. PubMed ID: 17049186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplicability of self-interacting human genes.
    Pérez-Bercoff A; Makino T; McLysaght A
    BMC Evol Biol; 2010 May; 10():160. PubMed ID: 20509897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene essentiality, gene duplicability and protein connectivity in human and mouse.
    Liang H; Li WH
    Trends Genet; 2007 Aug; 23(8):375-8. PubMed ID: 17512629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent evolution of gene circuits.
    Conant GC; Wagner A
    Nat Genet; 2003 Jul; 34(3):264-6. PubMed ID: 12819781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.