These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15599604)

  • 1. Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis.
    Agnati LF; Genedani S; Lenzi PL; Leo G; Mora F; Ferré S; Fuxe K
    J Neural Transm (Vienna); 2005 Jan; 112(1):45-63. PubMed ID: 15599604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy gradients for VT-signal migration in the CNS: studies on melanocortin receptors, mitochondrial uncoupling proteins and food intake.
    Agnati LF; Vergoni AV; Leo G; Genedani S; Franco R; Bertolini A; Fuxe K
    J Endocrinol Invest; 2004; 27(6 Suppl):23-34. PubMed ID: 15481801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discovery of central monoamine neurons gave volume transmission to the wired brain.
    Fuxe K; Dahlström AB; Jonsson G; Marcellino D; Guescini M; Dam M; Manger P; Agnati L
    Prog Neurobiol; 2010 Feb; 90(2):82-100. PubMed ID: 19853007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis.
    Zilberter Y; Zilberter T; Bregestovski P
    Trends Pharmacol Sci; 2010 Sep; 31(9):394-401. PubMed ID: 20633934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of the extracellular space on the holistic behavior of the brain.
    Marcoli M; Agnati LF; Benedetti F; Genedani S; Guidolin D; Ferraro L; Maura G; Fuxe K
    Rev Neurosci; 2015; 26(5):489-506. PubMed ID: 26103627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves.
    Agnati LF; Cortelli P; Biagini G; Bjelke B; Fuxe K
    Neuroreport; 1994 Dec; 6(1):9-12. PubMed ID: 7703437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology.
    Agnati LF; Bjelke B; Fuxe K
    Med Res Rev; 1995 Jan; 15(1):33-45. PubMed ID: 7898168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.
    Agnati LF; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding wiring and volume transmission.
    Agnati LF; Guidolin D; Guescini M; Genedani S; Fuxe K
    Brain Res Rev; 2010 Sep; 64(1):137-59. PubMed ID: 20347870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication and computation in the central nervous system.
    Benfenati F; Agnati LF
    Funct Neurol; 1991; 6(3):202-9. PubMed ID: 1683850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emergence of the volume transmission concept.
    Zoli M; Torri C; Ferrari R; Jansson A; Zini I; Fuxe K; Agnati LF
    Brain Res Brain Res Rev; 1998 May; 26(2-3):136-47. PubMed ID: 9651506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives.
    Agnati LF; Leo G; Zanardi A; Genedani S; Rivera A; Fuxe K; Guidolin D
    Acta Physiol (Oxf); 2006; 187(1-2):329-44. PubMed ID: 16734770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume transmission and its different forms in the central nervous system.
    Fuxe K; Borroto-Escuela DO; Romero-Fernandez W; Zhang WB; Agnati LF
    Chin J Integr Med; 2013 May; 19(5):323-9. PubMed ID: 23674109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators.
    Sánchez-Lasheras C; Könner AC; Brüning JC
    Front Neuroendocrinol; 2010 Jan; 31(1):4-15. PubMed ID: 19729032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro.
    Holmgren CD; Mukhtarov M; Malkov AE; Popova IY; Bregestovski P; Zilberter Y
    J Neurochem; 2010 Feb; 112(4):900-12. PubMed ID: 19943846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The theory of multiple defects and synaptic transmission].
    Pendefunda L
    Rev Med Chir Soc Med Nat Iasi; 1990; 94(3-4):669-75. PubMed ID: 1966693
    [No Abstract]   [Full Text] [Related]  

  • 17. Brain circuits regulating energy homeostasis.
    Horvath TL; Diano S; Tschöp M
    Neuroscientist; 2004 Jun; 10(3):235-46. PubMed ID: 15155062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology.
    Abbott NJ
    Neurochem Int; 2004 Sep; 45(4):545-52. PubMed ID: 15186921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrasynaptic volume transmission and diffusion parameters of the extracellular space.
    Syková E
    Neuroscience; 2004; 129(4):861-76. PubMed ID: 15561404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic signaling: the positive side of negative feedback.
    Turrigiano G
    Curr Opin Neurobiol; 2007 Jun; 17(3):318-24. PubMed ID: 17451937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.