BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15599964)

  • 1. Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars.
    Derksen GC; Lelyveld GP; van Beek TA; Capelle A; de Groot AE
    Phytochem Anal; 2004; 15(6):397-406. PubMed ID: 15599964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography.
    Boldizsár I; Szucs Z; Füzfai Z; Molnár-Perl I
    J Chromatogr A; 2006 Nov; 1133(1-2):259-74. PubMed ID: 16962601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and enzymatic hydrolysis of anthraquinone glycosides from madder roots.
    Derksen GC; Naayer M; van Beek TA; Capelle A; Haaksman IK; van Doren HA; de Groot A
    Phytochem Anal; 2003; 14(3):137-44. PubMed ID: 12793459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).
    Ford L; Henderson RL; Rayner CM; Blackburn RS
    J Chromatogr A; 2017 Mar; 1487():36-46. PubMed ID: 28131591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation.
    Henderson RL; Rayner CM; Blackburn RS
    Phytochemistry; 2013 Nov; 95():105-8. PubMed ID: 23891215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection.
    Cuoco G; Mathe C; Archier P; Chemat F; Vieillescazes C
    Ultrason Sonochem; 2009 Jan; 16(1):75-82. PubMed ID: 18617432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation.
    Ford L; Rayner CM; Blackburn RS
    Phytochemistry; 2015 Sep; 117():168-173. PubMed ID: 26091962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Examination of the anthraquinone composition in root-stock and root samples of Rubia tinctorium L. plants of different origins].
    Boldizsár I; László-Bencsik A; Szucs Z; Dános B
    Acta Pharm Hung; 2004; 74(3):142-8. PubMed ID: 16318223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthraquinone distribution in the hypogeal apparatus of Rubia peregrina L. growing wild in Sardinia.
    Usai M; Marchetti M
    Nat Prod Res; 2010 Apr; 24(7):626-32. PubMed ID: 20401794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical structure determination of DNA bases modified by active metabolites of lucidin-3-O-primeveroside.
    Ishii Y; Okamura T; Inoue T; Fukuhara K; Umemura T; Nishikawa A
    Chem Res Toxicol; 2010 Jan; 23(1):134-41. PubMed ID: 20000472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytohistological and phytochemical study of madder root extracts obtained by ultrasonic and classical extractions.
    Cuoco G; Mathe C; Archier P; El Maâtaoui M; Vieillescazes C
    Phytochem Anal; 2009; 20(6):484-90. PubMed ID: 19774541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging.
    Ishii Y; Nakamura K; Mitsumoto T; Takimoto N; Namiki M; Takasu S; Ogawa K
    Food Chem Toxicol; 2022 Mar; 161():112851. PubMed ID: 35139434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of naphthalene and anthraquinone derivatives in Rumex nepalensis Spreng. roots by HPLC: comparison of different extraction methods and validation.
    Gautam R; Srivastava A; Jachak SM
    Phytochem Anal; 2011; 22(2):153-7. PubMed ID: 21046683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of anthraquinones in cell cultures of Cinchona 'Robusta' by HPLC with photodiode array and mass spectrometry detection.
    Han YS; Hofte B; van der Heijden R; Verpoorte R
    Phytochem Anal; 2003; 14(5):298-305. PubMed ID: 14516002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium-term multi-organ bioassay.
    Inoue K; Yoshida M; Takahashi M; Fujimoto H; Shibutani M; Hirose M; Nishikawa A
    Cancer Sci; 2009 Dec; 100(12):2261-7. PubMed ID: 19793347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activity of common madder (Rubia tinctorum L.).
    Kalyoncu F; Cetin B; Saglam H
    Phytother Res; 2006 Jun; 20(6):490-2. PubMed ID: 16619348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quirks of dye nomenclature. 14. Madder: queen of red dyes.
    Cooksey CJ
    Biotech Histochem; 2020 Aug; 95(6):474-482. PubMed ID: 32022588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on coloring constituents in commercial madder color].
    Kawasaki Y; Goda Y; Sato K; Toshihira K
    Eisei Shikenjo Hokoku; 1989; (107):103-5. PubMed ID: 2636908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of lucidin-specific DNA adducts by liquid chromatography with tandem mass spectrometry in the livers and kidneys of rats given lucidin-3-O-primeveroside.
    Ishii Y; Inoue K; Takasu S; Jin M; Matsushita K; Kuroda K; Fukuhara K; Nishikawa A; Umemura T
    Chem Res Toxicol; 2012 May; 25(5):1112-8. PubMed ID: 22494063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mutagenic potential of madder root in dyeing processes in the textile industry.
    Jäger I; Hafner C; Welsch C; Schneider K; Iznaguen H; Westendorf J
    Mutat Res; 2006 Jun; 605(1-2):22-9. PubMed ID: 16678474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.