These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1559997)

  • 1. Fe(II) oxidation and Fe(III) incorporation by the M(r) 66,000 microsomal iron protein that stimulates NADPH oxidation.
    Minotti G; Ikeda-Saito M
    J Biol Chem; 1992 Apr; 267(11):7611-4. PubMed ID: 1559997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bovine heart microsomes contain an Mr = 66,000 non-heme iron protein which stimulates NADPH oxidation.
    Minotti G; Ikeda-Saito M
    J Biol Chem; 1991 Oct; 266(30):20011-7. PubMed ID: 1939064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsomal iron-dependent NADPH oxidation: evidence for the involvement of membrane-bound nonheme iron in NADPH oxidation by rat heart microsomes.
    Minotti G; Di Gennaro M
    Arch Biochem Biophys; 1990 Nov; 282(2):270-4. PubMed ID: 2173478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxy radical formation during redox cycling of the bleomycin-iron (III) complex by NADPH-cytochrome P-450 reductase.
    Mahmutoglu I; Kappus H
    Biochem Pharmacol; 1985 Sep; 34(17):3091-4. PubMed ID: 2412562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microsomal membrane component associated with iron reduction in NADPH-supported lipid peroxidation.
    Tampo Y; Yonaha M
    Lipids; 1995 Jan; 30(1):55-62. PubMed ID: 7760689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycling of Fe(III)-bleomycin by NADPH-cytochrome P-450 reductase.
    Scheulen ME; Kappus H; Thyssen D; Schmidt CG
    Biochem Pharmacol; 1981 Dec; 30(24):3385-8. PubMed ID: 6173042
    [No Abstract]   [Full Text] [Related]  

  • 7. NADPH-dependent drug redox cycling and lipid peroxidation in microsomes from human term placenta.
    Byczkowski JZ; Kulkarni AP
    Int J Biochem; 1989; 21(2):183-90. PubMed ID: 2501113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of Fe(III)ADP complex by liver microsomes.
    Végh M; Marton A; Horváth I
    Biochim Biophys Acta; 1988 Feb; 964(2):146-50. PubMed ID: 3124887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents.
    Winston GW; Cederbaum AI
    J Biol Chem; 1983 Feb; 258(3):1508-13. PubMed ID: 6296101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of protein-bound iodine formation by lipid extracts from hog thyroid microsomes.
    Nakagawa H; Endo Y; Ohtaki S
    Endocrinol Jpn; 1981 Aug; 28(4):409-17. PubMed ID: 6820773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver nuclear NADPH-cytochrome P-450 reductase may be involved in redox cycling of bleomycin-Fe(III), oxy radical formation and DNA damage.
    Kappus H; Mahmutoglu I; Kostrucha J; Scheulen ME
    Free Radic Res Commun; 1987; 2(4-6):271-7. PubMed ID: 2462531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP
    Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-EDTA stimulated reduction of indicine N-oxide by the hepatic microsomal fraction, isolated hepatocytes, and the intact rat.
    Powis G; Svingen BA; Degraw C
    Biochem Pharmacol; 1982 Feb; 31(3):293-9. PubMed ID: 6280724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferroxidase activity of ferritin: effects of pH, buffer and Fe(II) and Fe(III) concentrations on Fe(II) autoxidation and ferroxidation.
    Yang X; Chasteen ND
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):615-8. PubMed ID: 10051430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction.
    Jannetto PJ; Antholine WE; Myers CR
    Toxicology; 2001 Feb; 159(3):119-33. PubMed ID: 11223168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.