These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1559997)
21. The oxidation of tetrachloro-1,4-hydroquinone by microsomes and purified cytochrome P-450b. Implications for covalent binding to protein and involvement of reactive oxygen species. van Ommen B; Voncken JW; Müller F; van Bladeren PJ Chem Biol Interact; 1988; 65(3):247-59. PubMed ID: 3132330 [TBL] [Abstract][Full Text] [Related]
22. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta). Ojha V; Kohli KK Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of in vitro lipid peroxidation by 21-aminosteroids. Evidence for differential mechanisms. Ryan TP; Steenwyk RC; Pearson PG; Petry TW Biochem Pharmacol; 1993 Sep; 46(5):877-84. PubMed ID: 8373438 [TBL] [Abstract][Full Text] [Related]
24. NADPH- and adriamycin-dependent microsomal release of iron and lipid peroxidation. Minotti G Arch Biochem Biophys; 1990 Mar; 277(2):268-76. PubMed ID: 2310194 [TBL] [Abstract][Full Text] [Related]
25. Adrenodoxin reductase.adrenodoxin complex. Flavin to iron-sulfur electron transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction. Lambeth JD; Kamin H J Biol Chem; 1979 Apr; 254(8):2766-74. PubMed ID: 34608 [No Abstract] [Full Text] [Related]
26. Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes. Sakaki T; Kominami S; Hayashi K; Akiyoshi-Shibata M; Yabusaki Y J Biol Chem; 1996 Oct; 271(42):26209-13. PubMed ID: 8824269 [TBL] [Abstract][Full Text] [Related]
29. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):781-6. PubMed ID: 8240292 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of the biphasic effect of ethylenediaminetetraacetate on lipid peroxidation in iron-supported and reconstituted enzymatic system. Tampo Y; Onodera S; Yonaha M Free Radic Biol Med; 1994 Jul; 17(1):27-34. PubMed ID: 7959164 [TBL] [Abstract][Full Text] [Related]
31. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Morehouse LA; Thomas CE; Aust SD Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320 [TBL] [Abstract][Full Text] [Related]
32. Stimulation of microsomal drug oxidation activities by incorporation into microsomes of purified NADPH-cytochrome c (P-450) reductase. Kitada M; Kubota K; Kitagawa H; Kamataki T Jpn J Pharmacol; 1979 Dec; 29(6):877-87. PubMed ID: 120463 [TBL] [Abstract][Full Text] [Related]
33. Interaction between NADPH-cytochrome P-450 reductase and hepatic microsomes. Yang CS; Strickhart FS; Kicha LP Biochim Biophys Acta; 1978 May; 509(2):326-37. PubMed ID: 26401 [TBL] [Abstract][Full Text] [Related]
34. Biochemical properties of short- and long-chain rat liver microsomal trans-2-enoyl coenzyme A reductase. Nagi MN; Prasad MR; Cook L; Cinti DL Arch Biochem Biophys; 1983 Oct; 226(1):50-64. PubMed ID: 6416174 [TBL] [Abstract][Full Text] [Related]
35. Structural and functional transitions of the drug-metabolising systems under oxidative injury. Zavodnik L; Zavodnik I; Ignatenko K; Bryszewska M; Buko V Exp Toxicol Pathol; 1999 Jul; 51(4-5):446-50. PubMed ID: 10445414 [TBL] [Abstract][Full Text] [Related]
36. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. Vermilion JL; Ballou DP; Massey V; Coon MJ J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861 [TBL] [Abstract][Full Text] [Related]
37. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. II. Role in microsomal oxidation of ethanol. Winston GW; Cederbaum AI J Biol Chem; 1983 Feb; 258(3):1514-9. PubMed ID: 6296102 [No Abstract] [Full Text] [Related]
38. Cytochrome P-450-dependent oxidase activity and hydroxyl radical production in micellar and membranous types of reconstituted systems. Terelius Y; Ingelman-Sundberg M Biochem Pharmacol; 1988 Apr; 37(7):1383-9. PubMed ID: 2833279 [TBL] [Abstract][Full Text] [Related]
39. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes. Jeffery EH Mol Pharmacol; 1983 Mar; 23(2):467-73. PubMed ID: 6132332 [TBL] [Abstract][Full Text] [Related]
40. Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate . cytochrome c reductase complex of bovine heart mitochondria. Trumpower BL; Edwards CA J Biol Chem; 1979 Sep; 254(17):8697-706. PubMed ID: 224062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]