These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15600079)

  • 1. A lateral field excited liquid acoustic wave sensor.
    Hu Y; French LA; Radecsky K; da Cunha MP; Millard P; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1373-80. PubMed ID: 15600079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk Acoustic Wave Characteristics of Pseudo Lateral-Field-Excitation on LGT Single Crystal for Liquid Phase Sensing.
    Xu J; Ma T; Yan L; Wang M; Wang J; Du J; Zhang C
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral field excited quartz crystal microbalances for biosensing applications.
    Hartz JSR; Emanetoglu NW; Howell C; Vetelino JF
    Biointerphases; 2020 Jun; 15(3):030801. PubMed ID: 32486650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lateral-field-excited LiTaO3 high-frequency bulk acoustic wave sensor.
    McCann DF; McGann JM; Parks JM; Frankel DJ; da Cunha MP; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):779-87. PubMed ID: 19406706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes.
    Ma T; Wang J; Du J; Yuan L; Qian Z; Zhang Z; Zhang C
    Ultrasonics; 2013 Mar; 53(3):648-51. PubMed ID: 23339996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral-field-excited bulk acoustic wave sensors on langasite working on different operational modes.
    Ma T; Wang J; Du J; Yuan L; Qian Z; Zhang Z; Zhang C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):864-7. PubMed ID: 23549549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Dual Channel Lateral Field Excitation Quartz Crystal Microbalance for Measuring Liquid Electrical Properties.
    Liang J; Kong D; Liu C
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual lateral-field-excited bulk acoustic wave sensor array.
    Winters S; Bernhardt G; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):573-8. PubMed ID: 23475922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk acoustic wave sensors for sensing measurand-induced electrical property changes in solutions.
    Zhang C; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):773-8. PubMed ID: 11381702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-mode lateral-field-excitation bulk acoustic wave characteristics of Ca
    Ma T; Zhang Q; Yu F; Xie C; Wang J; Du J; Huang B; Huang J; Zhang C
    J Acoust Soc Am; 2017 Aug; 142(2):641. PubMed ID: 28863593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.
    Uttenthaler E; Schräml M; Mandel J; Drost S
    Biosens Bioelectron; 2001 Dec; 16(9-12):735-43. PubMed ID: 11679251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor.
    Dickherber A; Corso CD; Hunt W
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4590-3. PubMed ID: 17946254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Development of Microscale Thickness Shear Mode (TSM) Resonators for Sensing Neuronal Adhesion.
    Khraiche ML; Rogul J; Muthuswamy J
    Front Neurosci; 2019; 13():518. PubMed ID: 31213969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unfound Associated Resonant Model and Its Impact on Response of a Quartz Crystal Microbalance in the Liquid Phase.
    Kang Q; Shen Q; Zhang P; Wang H; Sun Y; Shen D
    Anal Chem; 2018 Feb; 90(4):2796-2804. PubMed ID: 29376639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of Quartz Crystal Microbalance to Liquid Electrical Properties.
    Pan W; Huang X; Yao Y; Chen Q; Liu D
    Anal Chem; 2023 Feb; 95(5):3075-3081. PubMed ID: 36691886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichannel monolithic quartz crystal microbalance gas sensor array.
    Jin X; Huang Y; Mason A; Zeng X
    Anal Chem; 2009 Jan; 81(2):595-603. PubMed ID: 19090744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of an antiparallel coupled resonator for chemical sensor applications.
    Abe T; Kato H
    Anal Chem; 2007 Sep; 79(17):6804-6. PubMed ID: 17665878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications.
    Kabir KM; Sabri YM; Kandjani AE; Ippolito SJ; Bhargava SK
    Analyst; 2016 Apr; 141(8):2463-73. PubMed ID: 26981609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.