These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15600337)

  • 1. Porphyrin distortion during affinity maturation of a ferrochelatase antibody, monitored by Resonance Raman spectroscopy.
    Venkateshrao S; Yin J; Jarzecki AA; Schultz PG; Spiro TG
    J Am Chem Soc; 2004 Dec; 126(50):16361-7. PubMed ID: 15600337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porphyrin distortion from resonance Raman intensities of out-of-plane modes: Computation and modeling of N-methylmesoporphyrin, a ferrochelatase transition state analog.
    Jarzecki AA; Spiro TG
    J Phys Chem A; 2005 Jan; 109(3):421-30. PubMed ID: 16833362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions.
    Blackwood ME; Rush TS; Romesberg F; Schultz PG; Spiro TG
    Biochemistry; 1998 Jan; 37(3):779-82. PubMed ID: 9457047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism.
    Shipovskov S; Karlberg T; Fodje M; Hansson MD; Ferreira GC; Hansson M; Reimann CT; Al-Karadaghi S
    J Mol Biol; 2005 Oct; 352(5):1081-90. PubMed ID: 16140324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved active-site loop residues of ferrochelatase induce porphyrin conformational changes necessary for catalysis.
    Shi Z; Franco R; Haddad R; Shelnutt JA; Ferreira GC
    Biochemistry; 2006 Mar; 45(9):2904-12. PubMed ID: 16503645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evidence for substrate strain in antibody catalysis.
    Yin J; Andryski SE; Beuscher AE; Stevens RC; Schultz PG
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):856-61. PubMed ID: 12552112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry properties of vibrational modes in mesoporphyrin IX dimethyl ester investigated by polarization-sensitive resonance Raman and CARS spectroscopy.
    Koster J; Popp J; Kiefer W; Schlücker S
    J Phys Chem A; 2006 Oct; 110(39):11252-9. PubMed ID: 17004734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanistic basis of porphyrin metallation by ferrochelatase.
    Lecerof D; Fodje M; Hansson A; Hansson M; Al-Karadaghi S
    J Mol Biol; 2000 Mar; 297(1):221-32. PubMed ID: 10704318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and kinetic evidence for strain in biological catalysis.
    Romesberg FE; Santarsiero BD; Spiller B; Yin J; Barnes D; Schultz PG; Stevens RC
    Biochemistry; 1998 Oct; 37(41):14404-9. PubMed ID: 9772166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of porphyrin distortions for the ferrochelatase reaction.
    Sigfridsson E; Ryde U
    J Biol Inorg Chem; 2003 Feb; 8(3):273-82. PubMed ID: 12589563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrin interactions with wild-type and mutant mouse ferrochelatase.
    Franco R; Ma JG; Lu Y; Ferreira GC; Shelnutt JA
    Biochemistry; 2000 Mar; 39(10):2517-29. PubMed ID: 10704201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman Spectroscopic Examination of Ferrochelatase-induced Porphyrin Distortion.
    Franco R; Al-Karadaghi S; Ferreira GC
    J Porphyr Phthalocyanines; 2011 May; 15(5):357-363. PubMed ID: 21776189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios.
    Lu Y; Sousa A; Franco R; Mangravita A; Ferreira GC; Moura I; Shelnutt JA
    Biochemistry; 2002 Jul; 41(26):8253-62. PubMed ID: 12081474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl].
    Paulat F; Praneeth VK; Näther C; Lehnert N
    Inorg Chem; 2006 Apr; 45(7):2835-56. PubMed ID: 16562940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural plasticity and the evolution of antibody affinity and specificity.
    Yin J; Beuscher AE; Andryski SE; Stevens RC; Schultz PG
    J Mol Biol; 2003 Jul; 330(4):651-6. PubMed ID: 12850137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory studies on the Raman and IR spectra of meso-tetraphenylporphyrin diacid.
    Xu LC; Li ZY; Tan W; He TJ; Liu FC; Chen DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):850-62. PubMed ID: 16303631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman study of free-base tetraphenylporphine and its dication.
    Saini GS
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):981-6. PubMed ID: 16458581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of porphyrin-induced conformational dynamics in the heme biosynthesis enzyme ferrochelatase.
    Asuru AP; An M; Busenlehner LS
    Biochemistry; 2012 Sep; 51(36):7116-27. PubMed ID: 22897320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2-water system.
    Rudolph WW; Fischer D; Irmer G
    Appl Spectrosc; 2006 Feb; 60(2):130-44. PubMed ID: 16542564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent Raman study of pyrrole and its vibrational analysis using DFT calculations.
    Singh DK; Srivastava SK; Ojha AK; Asthana BP
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):823-9. PubMed ID: 18396452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.