These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15600352)

  • 1. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions.
    Kotera M; Okuno Y; Hattori M; Goto S; Kanehisa M
    J Am Chem Soc; 2004 Dec; 126(50):16487-98. PubMed ID: 15600352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps.
    Latino DA; Zhang QY; Aires-de-Sousa J
    Bioinformatics; 2008 Oct; 24(19):2236-44. PubMed ID: 18676416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized reaction patterns for prediction of unknown enzymatic reactions.
    Shimizu Y; Hattori M; Goto S; Kanehisa M
    Genome Inform; 2008; 20():149-58. PubMed ID: 19425130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ECOH: an enzyme commission number predictor using mutual information and a support vector machine.
    Matsuta Y; Ito M; Tohsato Y
    Bioinformatics; 2013 Feb; 29(3):365-72. PubMed ID: 23220570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic assignment of reaction operators to enzymatic reactions.
    Leber M; Egelhofer V; Schomburg I; Schomburg D
    Bioinformatics; 2009 Dec; 25(23):3135-42. PubMed ID: 19783831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment of EC numbers to enzymatic reactions with MOLMAP reaction descriptors and random forests.
    Latino DA; Aires-de-Sousa J
    J Chem Inf Model; 2009 Jul; 49(7):1839-46. PubMed ID: 19588957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of EC numbers to enzymatic reactions with reaction difference fingerprints.
    Hu QN; Zhu H; Li X; Zhang M; Deng Z; Yang X; Deng Z
    PLoS One; 2012; 7(12):e52901. PubMed ID: 23285222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme databases.
    Schomburg D; Schomburg I
    Methods Mol Biol; 2010; 609():113-28. PubMed ID: 20221916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliciting possible reaction equations and metabolic pathways involving orphan metabolites.
    Kotera M; McDonald AG; Boyce S; Tipton KF
    J Chem Inf Model; 2008 Dec; 48(12):2335-49. PubMed ID: 19053521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of chemical reactions and chemoinformatic processing of enzymatic transformations.
    Latino DA; Aires-de-Sousa J
    Methods Mol Biol; 2011; 672():325-40. PubMed ID: 20838975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ORENZA: a web resource for studying ORphan ENZyme activities.
    Lespinet O; Labedan B
    BMC Bioinformatics; 2006 Oct; 7():436. PubMed ID: 17026747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs.
    Yamanishi Y; Hattori M; Kotera M; Goto S; Kanehisa M
    Bioinformatics; 2009 Jun; 25(12):i179-86. PubMed ID: 19477985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KAAS: an automatic genome annotation and pathway reconstruction server.
    Moriya Y; Itoh M; Okuda S; Yoshizawa AC; Kanehisa M
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W182-5. PubMed ID: 17526522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme classification by ligand binding.
    Izrailev S; Farnum MA
    Proteins; 2004 Dec; 57(4):711-24. PubMed ID: 15476211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale prediction of function shift in protein families with a focus on enzymatic function.
    Abhiman S; Sonnhammer EL
    Proteins; 2005 Sep; 60(4):758-68. PubMed ID: 16001403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised enzyme network inference from the integration of genomic data and chemical information.
    Yamanishi Y; Vert JP; Kanehisa M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i468-77. PubMed ID: 15961492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition.
    Cai YD; Zhou GP; Chou KC
    J Theor Biol; 2005 May; 234(1):145-9. PubMed ID: 15721043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.
    Oh M; Yamada T; Hattori M; Goto S; Kanehisa M
    J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic assignment of thermodynamic constraints in metabolic network models.
    Kümmel A; Panke S; Heinemann M
    BMC Bioinformatics; 2006 Nov; 7():512. PubMed ID: 17123434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of missing enzyme genes in a bacterial metabolic network. Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa.
    Yamanishi Y; Mihara H; Osaki M; Muramatsu H; Esaki N; Sato T; Hizukuri Y; Goto S; Kanehisa M
    FEBS J; 2007 May; 274(9):2262-73. PubMed ID: 17388807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.