These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 15600356)
1. pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-Markovnikov and Markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water. Ogo S; Uehara K; Abura T; Watanabe Y; Fukuzumi S J Am Chem Soc; 2004 Dec; 126(50):16520-7. PubMed ID: 15600356 [TBL] [Abstract][Full Text] [Related]
2. Isolation and crystal structures of both enol and keto tautomer intermediates in a hydration of an alkyne-carboxylic acid ester catalyzed by iridium complexes in water. Kanemitsu H; Uehara K; Fukuzumi S; Ogo S J Am Chem Soc; 2008 Dec; 130(50):17141-7. PubMed ID: 19012369 [TBL] [Abstract][Full Text] [Related]
3. Hydration of nitrosylruthenium bis(alkynyl) complexes with hydrotris(pyrazolyl)borate: insertion/hydration and double hydration products. Arikawa Y; Nishimura Y; Ikeda K; Onishi M J Am Chem Soc; 2004 Mar; 126(12):3706-7. PubMed ID: 15038711 [TBL] [Abstract][Full Text] [Related]
4. Isolation and crystal structure of a water-soluble iridium hydride: a robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds in acidic media. Abura T; Ogo S; Watanabe Y; Fukuzumi S J Am Chem Soc; 2003 Apr; 125(14):4149-54. PubMed ID: 12670237 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, reactivity, spectroscopic characterization, X-ray structures, PGSE, and NOE NMR studies of (eta5-C5Me5)-rhodium and -iridium derivatives containing bis(pyrazolyl)alkane ligands. Pettinari C; Pettinari R; Marchetti F; Macchioni A; Zuccaccia D; Skelton BW; White AH Inorg Chem; 2007 Feb; 46(3):896-906. PubMed ID: 17257033 [TBL] [Abstract][Full Text] [Related]
6. Structural versatility of 5-methyltetrazolato complexes of (eta5-pentamethylcyclopentadienyl)iridium(III) incorporating 2,2'-bipyridine, N,N-dimethyldithiocarbamate, or 2-pyridinethiolate ligands. Kotera M; Sekioka Y; Suzuki T Inorg Chem; 2008 May; 47(9):3498-508. PubMed ID: 18041830 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Ogo S; Kabe R; Hayashi H; Harada R; Fukuzumi S Dalton Trans; 2006 Oct; (39):4657-63. PubMed ID: 17028673 [TBL] [Abstract][Full Text] [Related]
8. A general study of [(eta5-Cp')2Ti(eta2-Me3SiC2SiMe3)]-catalyzed hydroamination of terminal alkynes: regioselective formation of Markovnikov and anti-Markovnikov products and mechanistic explanation (Cp'=C5H5, C5H4Et, C5Me5). Tillack A; Jiao H; Garcia Castro I; Hartung CG; Beller M Chemistry; 2004 May; 10(10):2409-20. PubMed ID: 15146514 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and reactivity of Ir(I) and Ir(III) complexes with MeNH2, Me2C=NR (R = H, Me), C,N-C6H4{C(Me)=N(Me)}-2, and N,N'-RN=C(Me)CH2C(Me2)NHR (R = H, Me) ligands. Vicente J; Chicote MT; Vicente-Hernández I; Bautista D Inorg Chem; 2008 Oct; 47(20):9592-605. PubMed ID: 18808115 [TBL] [Abstract][Full Text] [Related]
10. New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation. Hesp KD; McDonald R; Ferguson MJ; Stradiotto M J Am Chem Soc; 2008 Dec; 130(48):16394-406. PubMed ID: 18986145 [TBL] [Abstract][Full Text] [Related]
11. Ligand exchange upon oxidation of a dinuclear Mn complex--detection of structural changes by FT-IR spectroscopy and ESI-MS. Eilers G; Zettersten C; Nyholm L; Hammarström L; Lomoth R Dalton Trans; 2005 Mar; (6):1033-41. PubMed ID: 15739005 [TBL] [Abstract][Full Text] [Related]
12. Comparison of ancillary ligand effects between 2,2'-bipyridine and 2-(2'-pyridyl)phenyl in the linkage and bridging isomerism of 5-methyltetrazolato iridium(III) and/or rhodium(III) complexes. Takayama A; Suzuki T; Ikeda M; Sunatsuki Y; Kojima M Dalton Trans; 2013 Oct; 42(40):14556-67. PubMed ID: 23979820 [TBL] [Abstract][Full Text] [Related]
14. Phosphaallyl complexes of Ru(II) derived from dicyclohexylvinylphosphine (DCVP). Duraczyńska D; Nelson JH Dalton Trans; 2005 Jan; (1):92-103. PubMed ID: 15605151 [TBL] [Abstract][Full Text] [Related]
15. Formation, dynamic behavior, and chemical transformation of Pt complexes with a rotaxane-like structure. Suzaki Y; Osakada K Chem Asian J; 2006 Sep; 1(3):331-43. PubMed ID: 17441068 [TBL] [Abstract][Full Text] [Related]
16. Highly selective phosphorescent chemosensor for fluoride based on an iridium(III) complex containing arylborane units. Zhao Q; Li F; Liu S; Yu M; Liu Z; Yi T; Huang C Inorg Chem; 2008 Oct; 47(20):9256-64. PubMed ID: 18811148 [TBL] [Abstract][Full Text] [Related]
17. A starburst-shaped heterometallic compound incorporating six densely packed gd(3+) ions. Livramento JB; Sour A; Borel A; Merbach AE; Tóth E Chemistry; 2006 Jan; 12(4):989-1003. PubMed ID: 16311990 [TBL] [Abstract][Full Text] [Related]
18. Selective low-temperature syntheses of facial and meridional tris-cyclometalated iridium(III) complexes. McGee KA; Mann KR Inorg Chem; 2007 Sep; 46(19):7800-9. PubMed ID: 17696337 [TBL] [Abstract][Full Text] [Related]
19. pH-Dependent chemoselective synthesis of alpha-amino acids. Reductive amination of alpha-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. Ogo S; Uehara K; Abura T; Fukuzumi S J Am Chem Soc; 2004 Mar; 126(10):3020-1. PubMed ID: 15012110 [TBL] [Abstract][Full Text] [Related]
20. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water. Fukuzumi S; Kobayashi T; Suenobu T J Am Chem Soc; 2010 Feb; 132(5):1496-7. PubMed ID: 20085352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]