These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 15600438)

  • 1. Stochastic analysis of the Lotka-Volterra model for ecosystems.
    Cai GQ; Lin YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic analysis of a pulse-type prey-predator model.
    Wu Y; Zhu WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041911. PubMed ID: 18517660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic analysis of time-delayed ecosystems.
    Cai GQ; Lin YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041913. PubMed ID: 17995032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction dynamics of Lotka-Volterra ecosystems on evolving networks.
    Coppex F; Droz M; Lipowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061901. PubMed ID: 15244611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuations and correlations in lattice models for predator-prey interaction.
    Mobilia M; Georgiev IT; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040903. PubMed ID: 16711780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.
    Afraimovich V; Tristan I; Huerta R; Rabinovich MI
    Chaos; 2008 Dec; 18(4):043103. PubMed ID: 19123613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food-web based unified model of macro- and microevolution.
    Chowdhury D; Stauffer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041901. PubMed ID: 14682967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading of families in cyclic predator-prey models.
    Ravasz M; Szabó G; Szolnoki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012901. PubMed ID: 15324103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stochastic perturbation on prey-predator systems.
    Rudnicki R; Pichór K
    Math Biosci; 2007 Mar; 206(1):108-19. PubMed ID: 16624335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator-prey dynamics in P systems ruled by metabolic algorithm.
    Fontana F; Manca V
    Biosystems; 2008 Mar; 91(3):545-57. PubMed ID: 17720307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".
    Sauga A; Mankin R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):062103. PubMed ID: 16089789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variability enhances species fitness in stochastic predator-prey interactions.
    Dobramysl U; Täuber UC
    Phys Rev Lett; 2008 Dec; 101(25):258102. PubMed ID: 19113755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-autonomous stochastic predator-prey model.
    Buonocore A; Caputo L; Pirozzi E; Nobile AG
    Math Biosci Eng; 2014 Apr; 11(2):167-88. PubMed ID: 24245713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a disease affecting a predator on the dynamics of a predator-prey system.
    Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J
    J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic eco-evolutionary model of a prey-predator community.
    Costa M; Hauzy C; Loeuille N; Méléard S
    J Math Biol; 2016 Feb; 72(3):573-622. PubMed ID: 26001744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual based modeling and parameter estimation for a Lotka-Volterra system.
    Waniewski J; Jedruch W
    Math Biosci; 1999 Mar; 157(1-2):23-36. PubMed ID: 10194922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angular velocity variations and stability of spatially explicit prey-predator systems.
    Abta R; Shnerb NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051914. PubMed ID: 17677105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium.
    Xiong JJ; Li X; Wang H
    Math Biosci Eng; 2019 Mar; 16(4):2717-2737. PubMed ID: 31137234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of two competing species in the presence of Lévy noise sources.
    La Cognata A; Valenti D; Dubkov AA; Spagnolo B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011121. PubMed ID: 20866579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized packs selection in predator-prey ecosystems.
    Pekalski A; Droz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021913. PubMed ID: 16605368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.