These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Simulating dielectric spectra: A demonstration of the direct electric field method and a new model for the nonlinear dielectric response. Woodcox M; Mahata A; Hagerstrom A; Stelson A; Muzny C; Sundararaman R; Schwarz K J Chem Phys; 2023 Mar; 158(12):124122. PubMed ID: 37003751 [TBL] [Abstract][Full Text] [Related]
25. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension. Misono Y; Negita K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061412. PubMed ID: 15697367 [TBL] [Abstract][Full Text] [Related]
26. A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant-Activated ER Suspensions. Kim YD J Colloid Interface Sci; 2001 Apr; 236(2):225-232. PubMed ID: 11401368 [TBL] [Abstract][Full Text] [Related]
27. Vivid-Colored Electrorheological fluids with simultaneous enhancements in color clarity and Electro-Responsivity. Noh J; Jekal S; Kim J; Kim HY; Chu YR; Kim CG; Oh WC; Song S; Sub Sim H; Yoon CM J Colloid Interface Sci; 2024 Mar; 657():373-383. PubMed ID: 38043239 [TBL] [Abstract][Full Text] [Related]
31. Extension of the surfactant bridge model for the electrorheological effects of surfactant-activated suspensions. Kim YD; Nam SW J Colloid Interface Sci; 2004 Jan; 269(1):205-10. PubMed ID: 14651914 [TBL] [Abstract][Full Text] [Related]
32. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation. Ko YG; Shin SS; Choi US; Park YS; Woo JW ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802 [TBL] [Abstract][Full Text] [Related]
33. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370 [TBL] [Abstract][Full Text] [Related]
34. Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials. Hong JY; Choi M; Kim C; Jang J J Colloid Interface Sci; 2010 Jul; 347(2):177-82. PubMed ID: 20416879 [TBL] [Abstract][Full Text] [Related]
35. Computer-controlled susceptometer for investigating the linear and nonlinear dielectric response. Miga S; Dec J; Kleemann W Rev Sci Instrum; 2007 Mar; 78(3):033902. PubMed ID: 17411190 [TBL] [Abstract][Full Text] [Related]
36. Electrorheological fluid dynamics. Zhang J; Gong X; Liu C; Wen W; Sheng P Phys Rev Lett; 2008 Nov; 101(19):194503. PubMed ID: 19113272 [TBL] [Abstract][Full Text] [Related]
37. Development of Novel Colorful Electrorheological Fluids. Jekal S; Kim J; Lu Q; Kim DH; Noh J; Kim HY; Kim MJ; Kim MS; Oh WC; Choi HJ; Yoon CM Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144903 [TBL] [Abstract][Full Text] [Related]
38. The giant electrorheological effect in suspensions of nanoparticles. Wen W; Huang X; Yang S; Lu K; Sheng P Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296 [TBL] [Abstract][Full Text] [Related]
39. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields. Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692 [TBL] [Abstract][Full Text] [Related]