These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15600451)

  • 1. Collective phase synchronization in locally coupled limit-cycle oscillators.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045204. PubMed ID: 15600451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of synchronization transitions in random networks of coupled oscillators.
    Um J; Hong H; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012810. PubMed ID: 24580284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions.
    Giver M; Jabeen Z; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046206. PubMed ID: 21599269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiregular concentric waves in heterogeneous lattices of coupled oscillators.
    Blasius B; Tönjes R
    Phys Rev Lett; 2005 Aug; 95(8):084101. PubMed ID: 16196859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Link-disorder fluctuation effects on synchronization in random networks.
    Hong H; Um J; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042105. PubMed ID: 23679371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators.
    Bukh AV; Schöll E; Anishchenko VS
    Chaos; 2019 May; 29(5):053105. PubMed ID: 31154795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization Transition of the Second-Order Kuramoto Model on Lattices.
    Ódor G; Deng S
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev Lett; 2006 Apr; 96(14):145701. PubMed ID: 16712095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced synchronization of a large population of globally coupled nonidentical oscillators.
    Nagai KH; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):065202. PubMed ID: 20866467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transitions towards frequency entrainment in large oscillator lattices.
    Ostborn P; Aberg S; Ohlén G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):015104. PubMed ID: 12935187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortices and the entrainment transition in the two-dimensional Kuramoto model.
    Lee TE; Tam H; Refael G; Rogers JL; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036202. PubMed ID: 21230156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators.
    Li BW; Fu C; Zhang H; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046207. PubMed ID: 23214663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of disorder on synchronization of discrete phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041107. PubMed ID: 17500865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization of oscillators with long-range power law interactions.
    Chowdhury D; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016205. PubMed ID: 20866705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.