These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15600515)

  • 1. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface.
    Wouchuk JG; López Cavada J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046303. PubMed ID: 15600515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The D'yakov-kontorovich instability of shock waves in real gases.
    Bates JW; Montgomery DC
    Phys Rev Lett; 2000 Feb; 84(6):1180-3. PubMed ID: 11017473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of the corrugation instability of a piston-driven shock wave.
    Bates JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013014. PubMed ID: 25679715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.
    Sirmas N; Radulescu MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023003. PubMed ID: 25768593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected.
    Wouchuk JG; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026305. PubMed ID: 15447586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows.
    Cobos Campos F; Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053007. PubMed ID: 25493881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave function delocalization and large-amplitude vibrations of helium on corrugated aromatic microsurfaces: tetracene.He and pentacene.He van der Waals complexes.
    Xu M; Bacić Z
    J Phys Chem A; 2007 Aug; 111(31):7653-63. PubMed ID: 17530836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field.
    Huete Ruiz de Lira C; Velikovich AL; Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056320. PubMed ID: 21728660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock wave in a one-dimensional granular chain under Hertz contact.
    Duan WS; Zhang ZB; Yang L
    Phys Rev E; 2016 Nov; 94(5-1):052906. PubMed ID: 27967032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field.
    Huete C; Wouchuk JG; Velikovich AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026312. PubMed ID: 22463322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave propagation in a dynamic system of soft granular materials.
    Harada S; Takagi S; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061305. PubMed ID: 16241219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons.
    Liu H; Zhang Y; Kang W; Zhang P; Duan H; He XT
    Phys Rev E; 2017 Feb; 95(2-1):023201. PubMed ID: 28297841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction of homogeneous and inhomogeneous plane waves on a doubly corrugated liquid/solid interface.
    Declercq NF; Degrieck J; Briers R; Leroy O
    Ultrasonics; 2005 Aug; 43(8):605-18. PubMed ID: 15913694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids.
    Dumazer G; Antoine C; Lemarchand A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066309. PubMed ID: 20365269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic molecular dynamics simulations of shock compressed quartz.
    Farrow MR; Probert MI
    J Chem Phys; 2011 Jul; 135(4):044508. PubMed ID: 21806139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.
    Campos FC; Wouchuk JG
    Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of rarefaction waves in van der Waals fluids.
    Yuen A; Barnard JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062307. PubMed ID: 26764692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmonotoic fluctuation-induced interactions between dielectric slabs carrying charge disorder.
    Sarabadani J; Naji A; Dean DS; Horgan RR; Podgornik R
    J Chem Phys; 2010 Nov; 133(17):174702. PubMed ID: 21054060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular forces caused by the confinement of thermal noise.
    Morariu MD; Schäffer E; Steiner U
    Phys Rev Lett; 2004 Apr; 92(15):156102. PubMed ID: 15169301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.