These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15600587)

  • 1. From subdiffusion to superdiffusion of particles on solid surfaces.
    Lacasta AM; Sancho JM; Romero AH; Sokolov IM; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051104. PubMed ID: 15600587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion on a solid surface: anomalous is normal.
    Sancho JM; Lacasta AM; Lindenberg K; Sokolov IM; Romero AH
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):250601. PubMed ID: 15244990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion.
    Kosztołowicz T
    Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model.
    Kumar N; Harbola U; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021101. PubMed ID: 20866769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and diffusion of overdamped Brownian particles in random potentials.
    Simon MS; Sancho JM; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062105. PubMed ID: 24483384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent diffusion in a random correlated potential.
    Zhou Y; Bao JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031103. PubMed ID: 16605496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian particles on rough substrates: relation between intermediate subdiffusion and asymptotic long-time diffusion.
    Hanes RD; Schmiedeberg M; Egelhaaf SU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062133. PubMed ID: 24483412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusion in 2D dusty-plasma liquids: numerical-simulation results.
    Hou LJ; Piel A; Shukla PK
    Phys Rev Lett; 2009 Feb; 102(8):085002. PubMed ID: 19257746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks.
    Abad E; Yuste SB; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031115. PubMed ID: 20365705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Langevin dynamics of correlated subdiffusion and normal diffusion.
    Wang Y; Zhao N; Yan Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041142. PubMed ID: 22680452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion, subdiffusion, and trapping of active particles in heterogeneous media.
    Chepizhko O; Peruani F
    Phys Rev Lett; 2013 Oct; 111(16):160604. PubMed ID: 24182247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian motors in nonlinear diffusive media.
    Anteneodo C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021102. PubMed ID: 17930001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications.
    Lawley SD
    Phys Rev E; 2020 Oct; 102(4-1):042125. PubMed ID: 33212732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations.
    Chechkin AV; Gorenflo R; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic theory of anomalous diffusion based on particle interactions.
    Lutsko JF; Boon JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.
    Han HT; Joo S; Sakaue T; Jeon JH
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markovian embedding of non-Markovian superdiffusion.
    Siegle P; Goychuk I; Talkner P; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011136. PubMed ID: 20365352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory-induced anomalous dynamics in a minimal random walk model.
    Harbola U; Kumar N; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022136. PubMed ID: 25215717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic lattice Monte Carlo simulation of viscoelastic subdiffusion.
    Fritsch CC; Langowski J
    J Chem Phys; 2012 Aug; 137(6):064114. PubMed ID: 22897262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusive rocking ratchets in viscoelastic media: transport optimization and thermodynamic efficiency in overdamped regime.
    Kharchenko VO; Goychuk I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052119. PubMed ID: 23767499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.