These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 15600688)
1. Phase transitions in an aging network. Hajra KB; Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056103. PubMed ID: 15600688 [TBL] [Abstract][Full Text] [Related]
2. Clustering properties of a generalized critical Euclidean network. Sen P; Manna SS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026104. PubMed ID: 14525046 [TBL] [Abstract][Full Text] [Related]
3. Critical phenomena and noise-induced phase transitions in neuronal networks. Lee KE; Lopes MA; Mendes JF; Goltsev AV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012701. PubMed ID: 24580251 [TBL] [Abstract][Full Text] [Related]
4. Comment on "Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks" [Chaos 16, 023119 (2006)]. Li L; Yang Y; Peng H Chaos; 2007 Sep; 17(3):038101; discussion 038102. PubMed ID: 17903027 [TBL] [Abstract][Full Text] [Related]
5. Hierarchy and polysynchrony in an adaptive network. Botella-Soler V; Glendinning P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062809. PubMed ID: 25019835 [TBL] [Abstract][Full Text] [Related]
6. Network reorganization driven by temporal interdependence of its elements. Waddell J; Zochowski M Chaos; 2006 Jun; 16(2):023106. PubMed ID: 16822009 [TBL] [Abstract][Full Text] [Related]
7. Multistate network for loop searching system with self-recovery property. Ueda K; Yadome M; Nishiura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022810. PubMed ID: 25353537 [TBL] [Abstract][Full Text] [Related]
8. Weight-driven growing networks. Antal T; Krapivsky PL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026103. PubMed ID: 15783374 [TBL] [Abstract][Full Text] [Related]
9. Chaotic phase synchronization in a modular neuronal network of small-world subnetworks. Yu H; Wang J; Liu Q; Wen J; Deng B; Wei X Chaos; 2011 Dec; 21(4):043125. PubMed ID: 22225362 [TBL] [Abstract][Full Text] [Related]
10. Adaptive targeting of chaotic response in periodically stimulated neural systems. Gupta K; Singh HP; Biswal B; Ramaswamy R Chaos; 2006 Jun; 16(2):023116. PubMed ID: 16822019 [TBL] [Abstract][Full Text] [Related]
11. Clustering of random scale-free networks. Colomer-de-Simon P; Boguñá M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026120. PubMed ID: 23005838 [TBL] [Abstract][Full Text] [Related]
12. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks. Yu W; Cao J Chaos; 2006 Jun; 16(2):023119. PubMed ID: 16822022 [TBL] [Abstract][Full Text] [Related]
13. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks. Yu H; Wang J; Du J; Deng B; Wei X; Liu C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052917. PubMed ID: 23767608 [TBL] [Abstract][Full Text] [Related]
14. Simulation of neuronal death and network recovery in a computational model of distributed cortical activity. Rubinov M; McIntosh AR; Valenzuela MJ; Breakspear M Am J Geriatr Psychiatry; 2009 Mar; 17(3):210-7. PubMed ID: 19001355 [TBL] [Abstract][Full Text] [Related]
15. Latching chains in K-nearest-neighbor and modular small-world networks. Song S; Yao H; Simonov AY Network; 2015; 26(1):1-24. PubMed ID: 25387273 [TBL] [Abstract][Full Text] [Related]
16. Growth of cortical neuronal network in vitro: modeling and analysis. Lai PY; Jia LC; Chan CK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051906. PubMed ID: 16802966 [TBL] [Abstract][Full Text] [Related]
17. Synchronization in asymmetrically coupled networks with node balance. Belykh I; Belykh V; Hasler M Chaos; 2006 Mar; 16(1):015102. PubMed ID: 16599768 [TBL] [Abstract][Full Text] [Related]
18. Complex network from time series based on phase space reconstruction. Gao Z; Jin N Chaos; 2009 Sep; 19(3):033137. PubMed ID: 19792017 [TBL] [Abstract][Full Text] [Related]
19. Detecting unstable periodic orbits in high-dimensional chaotic systems from time series: reconstruction meeting with adaptation. Ma H; Lin W; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050901. PubMed ID: 23767476 [TBL] [Abstract][Full Text] [Related]
20. Event-driven simulations of a plastic, spiking neural network. Chen CC; Jasnow D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031908. PubMed ID: 22060404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]