These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15600736)

  • 1. Scattering off two oscillating disks: dilute chaos.
    Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P; Benet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056215. PubMed ID: 15600736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological aspects of chaotic scattering in higher dimensions.
    Kovács Z; Wiesenfeld L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056207. PubMed ID: 11414990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering off an oscillating target: Basic mechanisms and their impact on cross sections.
    Brouzos I; Karlis AK; Chrysanthakopoulos CA; Diakonos FK; Constantoudis V; Schmelcher P; Benet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056207. PubMed ID: 19113200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets.
    Maiocchi CC; Lucarini V; Gritsun A
    Chaos; 2022 Mar; 32(3):033129. PubMed ID: 35364825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase space analysis of the dynamics on a potential energy surface with an entrance channel and two potential wells.
    Katsanikas M; García-Garrido VJ; Agaoglou M; Wiggins S
    Phys Rev E; 2020 Jul; 102(1-1):012215. PubMed ID: 32795001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow.
    Narayanan S; Gunaratne GH; Hussain F
    Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system.
    Drótos G; González Montoya F; Jung C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022906. PubMed ID: 25215798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonperiodic delay mechanism and fractallike behavior in classical time-dependent scattering.
    Papachristou PK; Diakonos FK; Mavrommatis E; Constantoudis V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016205. PubMed ID: 11461365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximating chaotic saddles for delay differential equations.
    Taylor SR; Campbell SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When is high-dimensional scattering chaos essentially two dimensional? Measuring the product structure of singularities.
    Drótos G; Jung C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056210. PubMed ID: 23214860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor.
    Pei X; Moss F
    Nature; 1996 Feb; 379(6566):618-21. PubMed ID: 8628396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of scattering on a classical two-dimensional artificial atom.
    Peelaers H; Partoens B; Tatyanenko DV; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036606. PubMed ID: 17500808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits.
    Suri B; Kageorge L; Grigoriev RO; Schatz MF
    Phys Rev Lett; 2020 Aug; 125(6):064501. PubMed ID: 32845663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral element method and the delayed feedback control of chaos.
    Tweten DJ; Mann BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046214. PubMed ID: 23214670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric determination of classical actions of heteroclinic and unstable periodic orbits.
    Li J; Tomsovic S
    Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.
    Saiki Y; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting invariant manifolds as stationary Lagrangian coherent structures in autonomous dynamical systems.
    Teramoto H; Haller G; Komatsuzaki T
    Chaos; 2013 Dec; 23(4):043107. PubMed ID: 24387546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.