These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15600790)

  • 1. Apparent slip over a solid-liquid interface with a no-slip boundary condition.
    Zhang J; Kwok DY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056701. PubMed ID: 15600790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary conditions at the liquid-liquid interface in the presence of surfactants.
    Hu Y; Zhang X; Wang W
    Langmuir; 2010 Jul; 26(13):10693-702. PubMed ID: 20507080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme.
    Yang L; Yu Y; Yang L; Hou G
    Phys Rev E; 2020 Feb; 101(2-1):023312. PubMed ID: 32168627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of steady-state lattice Boltzmann simulations for exterior flows.
    Liu B; Khalili A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056701. PubMed ID: 19113231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces.
    Zhang J; Kwok DY
    Langmuir; 2004 Sep; 20(19):8137-41. PubMed ID: 15350084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmann approach.
    Zhang J; Kwok DY
    J Colloid Interface Sci; 2005 Feb; 282(2):434-8. PubMed ID: 15589550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime.
    Tao S; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043305. PubMed ID: 25974610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method.
    Peng C; Geneva N; Guo Z; Wang LP
    Phys Rev E; 2017 Jan; 95(1-1):013301. PubMed ID: 28208327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle.
    Benzi R; Biferale L; Sbragaglia M; Succi S; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021509. PubMed ID: 17025439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidics of thin polymer films: linking the slip boundary condition at solid-liquid interfaces to macroscopic pattern formation and microscopic interfacial properties.
    McGraw JD; Bäumchen O; Klos M; Haefner S; Lessel M; Backes S; Jacobs K
    Adv Colloid Interface Sci; 2014 Aug; 210():13-20. PubMed ID: 24780402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls.
    Wang L; Tao S; Meng X; Zhang K; Lu G
    Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces.
    Zhang J; Li B; Kwok DY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):032602. PubMed ID: 15089339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On moving contact lines simulated by the single-component two-phase lattice-Boltzmann method.
    Huang JJ; Wu J
    Eur Phys J E Soft Matter; 2016 Apr; 39(4):46. PubMed ID: 27118536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal slip for liquids at rough solid surfaces.
    Zhang C; Chen Y; Peterson GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062407. PubMed ID: 25019794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.