These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15600795)

  • 1. Discrete variable representation for singular Hamiltonians.
    Schneider BI; Nygaard N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056706. PubMed ID: 15600795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.
    Szidarovszky T; Császár AG; Czakó G
    Phys Chem Chem Phys; 2010 Aug; 12(29):8373-86. PubMed ID: 20526489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lagrange-Lobatto interpolating polynomials in the discrete variable representation.
    Rayson MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026704. PubMed ID: 17930171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation.
    Power J; Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066707. PubMed ID: 23368078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results.
    Yu HG
    J Chem Phys; 2004 Feb; 120(5):2270-84. PubMed ID: 15268366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation.
    Szalay V
    J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multidimensional discrete variable representation basis obtained by simultaneous diagonalization.
    Dawes R; Carrington T
    J Chem Phys; 2004 Jul; 121(2):726-36. PubMed ID: 15260599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layered discrete variable representations and their application within the multiconfigurational time-dependent Hartree approach.
    Manthe U
    J Chem Phys; 2009 Feb; 130(5):054109. PubMed ID: 19206960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.
    Parrish RM; Hohenstein EG; Martínez TJ; Sherrill CD
    J Chem Phys; 2013 May; 138(19):194107. PubMed ID: 23697409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of discrete variable representation to planar H2+ in strong xuv laser fields.
    Ning QC; Peng LY; Hou XF; Xu Z; Gong Q
    J Chem Phys; 2012 Sep; 137(9):094101. PubMed ID: 22957549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient solution of Poisson's equation using discrete variable representation basis sets for Car-Parrinello ab initio molecular dynamics simulations with cluster boundary conditions.
    Lee HS; Tuckerman ME
    J Chem Phys; 2008 Dec; 129(22):224108. PubMed ID: 19071908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational properties of the discrete variable representation: discrete variable representation via effective operators.
    Szalay V; Ádám P
    J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.
    Kaledin AL; Lian T; Hill CL; Musaev DG
    J Chem Theory Comput; 2014 Aug; 10(8):3409-16. PubMed ID: 26588309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Coulomb wave function discrete variable representation to atomic systems in strong laser fields.
    Peng LY; Starace AF
    J Chem Phys; 2006 Oct; 125(15):154311. PubMed ID: 17059259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio molecular dynamics with discrete variable representation basis sets: techniques and application to liquid water.
    Lee HS; Tuckerman ME
    J Phys Chem A; 2006 Apr; 110(16):5549-60. PubMed ID: 16623489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of molecular electrostatics with boundary element methods.
    Liang J; Subramaniam S
    Biophys J; 1997 Oct; 73(4):1830-41. PubMed ID: 9336178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined hydrogen atom by the Lagrange-mesh method: energies, mean radii, and dynamic polarizabilities.
    Baye D; Sen KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026701. PubMed ID: 18850967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A space-time spectral collocation algorithm for the variable order fractional wave equation.
    Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA
    Springerplus; 2016; 5(1):1220. PubMed ID: 27536504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: energy levels of coupled systems with as many as 16 coordinates.
    Dawes R; Carrington T
    J Chem Phys; 2005 Apr; 122(13):134101. PubMed ID: 15847449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.