These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 15600902)

  • 21. Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian.
    Massel F; Leskinen MJ; Törmä P
    Phys Rev Lett; 2009 Aug; 103(6):066404. PubMed ID: 19792589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of elastic doublon decay in the Fermi-Hubbard model.
    Strohmaier N; Greif D; Jördens R; Tarruell L; Moritz H; Esslinger T; Sensarma R; Pekker D; Altman E; Demler E
    Phys Rev Lett; 2010 Feb; 104(8):080401. PubMed ID: 20366917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pairing and Pair Superfluid Density in One-Dimensional Two-Species Fermionic and Bosonic Hubbard Models.
    Grémaud B; Batrouni GG
    Phys Rev Lett; 2021 Jul; 127(2):025301. PubMed ID: 34296933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unconventional pairings of spin-orbit coupled attractive degenerate Fermi gas in a one-dimensional optical lattice.
    Liang J; Zhou X; Chui PH; Zhang K; Gu SJ; Gong M; Chen G; Jia S
    Sci Rep; 2015 Oct; 5():14863. PubMed ID: 26443006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superfluidity of trapped dipolar fermi gases.
    Baranov MA; Dobrek Ł; Lewenstein M
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):250403. PubMed ID: 15244988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superfluid state of repulsively interacting three-component fermionic atoms in optical lattices.
    Inaba K; Suga S
    Phys Rev Lett; 2012 Jun; 108(25):255301. PubMed ID: 23004614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of a molecular Bose-Einstein condensate from a Fermi gas.
    Greiner M; Regal CA; Jin DS
    Nature; 2003 Dec; 426(6966):537-40. PubMed ID: 14647340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-energy monopole modes of a trapped atomic Fermi gas.
    Bruun GM
    Phys Rev Lett; 2002 Dec; 89(26):263002. PubMed ID: 12484814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical temperature of interacting Bose gases in periodic potentials.
    Nguyen TT; Herrmann AJ; Troyer M; Pilati S
    Phys Rev Lett; 2014 May; 112(17):170402. PubMed ID: 24836222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
    Li J; de Melo LF; Luo L
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. d-Mott phases in one and two dimensions.
    Läuchli A; Honerkamp C; Rice TM
    Phys Rev Lett; 2004 Jan; 92(3):037006. PubMed ID: 14753900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bose-Einstein condensation of particle-hole pairs in ultracold fermionic atoms trapped within optical lattices.
    Lee C
    Phys Rev Lett; 2004 Sep; 93(12):120406. PubMed ID: 15447239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two fermions in a double well: exploring a fundamental building block of the Hubbard model.
    Murmann S; Bergschneider A; Klinkhamer VM; Zürn G; Lompe T; Jochim S
    Phys Rev Lett; 2015 Feb; 114(8):080402. PubMed ID: 25768739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for superfluidity of ultracold fermions in an optical lattice.
    Chin JK; Miller DE; Liu Y; Stan C; Setiawan W; Sanner C; Xu K; Ketterle W
    Nature; 2006 Oct; 443(7114):961-4. PubMed ID: 17066028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions.
    Köhl M; Moritz H; Stöferle T; Günter K; Esslinger T
    Phys Rev Lett; 2005 Mar; 94(8):080403. PubMed ID: 15783869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The negative-U Hubbard model with long-range Coulomb interaction: metal-insulator transition far from half-filling.
    Sarker SK; Lair SL
    J Phys Condens Matter; 2005 Jun; 17(25):3885-94. PubMed ID: 21690705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disorder-induced localization in a strongly correlated atomic Hubbard gas.
    Kondov SS; McGehee WR; Xu W; DeMarco B
    Phys Rev Lett; 2015 Feb; 114(8):083002. PubMed ID: 25768762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of positive and negative scattering lengths in a Fermi gas of atoms.
    Regal CA; Jin DS
    Phys Rev Lett; 2003 Jun; 90(23):230404. PubMed ID: 12857243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vortex arrays in a rotating superfluid Fermi gas.
    Feder DL
    Phys Rev Lett; 2004 Nov; 93(20):200406. PubMed ID: 15600906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.