These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15600973)

  • 1. Dynamics of human walking at steady speeds.
    Kokshenev VB
    Phys Rev Lett; 2004 Nov; 93(20):208101. PubMed ID: 15600973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biomechanics of skipping gaits: a third locomotion paradigm?
    Minetti AE
    Proc Biol Sci; 1998 Jul; 265(1402):1227-35. PubMed ID: 9699315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Center of mass mechanics of chimpanzee bipedal walking.
    Demes B; Thompson NE; O'Neill MC; Umberger BR
    Am J Phys Anthropol; 2015 Mar; 156(3):422-33. PubMed ID: 25407636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transmission efficiency of backward walking at different gradients.
    Minetti AE; Ardigò LP
    Pflugers Arch; 2001 Jul; 442(4):542-6. PubMed ID: 11510887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanics of functional asymmetry in bipedal walking.
    Gregg RD; Dhaher YY; Degani A; Lynch KM
    IEEE Trans Biomed Eng; 2012 May; 59(5):1310-8. PubMed ID: 22328168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An actuated dissipative spring-mass walking model: Predicting human-like ground reaction forces and the effects of model parameters.
    Li T; Li Q; Liu T
    J Biomech; 2019 Jun; 90():58-64. PubMed ID: 31078280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics and dynamics of burst transitions.
    Segers V; Van Caekenberghe I; De Clercq D; Aerts P
    J Mot Behav; 2014; 46(4):267-76. PubMed ID: 24773232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.