These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15601025)

  • 1. Dendritic to globular morphology transition in ternary alloy solidification.
    Danilov D; Nestler B
    Phys Rev Lett; 2004 Nov; 93(21):215501. PubMed ID: 15601025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-field simulations of velocity selection in rapidly solidified binary alloys.
    Fan J; Greenwood M; Haataja M; Provatas N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031602. PubMed ID: 17025638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field.
    Lü P; Zhou K; Wang HP
    Sci Rep; 2016 Dec; 6():39042. PubMed ID: 27958359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.
    Ohno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051603. PubMed ID: 23214789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.
    Lo TS; Karma A; Plapp M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031504. PubMed ID: 11308654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified cellular automaton model for the prediction of dendritic growth with melt convection.
    Zhu MF; Lee SY; Hong CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061610. PubMed ID: 15244588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy.
    Ruan Y; Mohajerani A; Dao M
    Sci Rep; 2016 Aug; 6():31684. PubMed ID: 27539749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and modelling studies for solidification of undercooled Ni-Fe-Si alloys.
    Mohan D; Phanikumar G
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180208. PubMed ID: 30827212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys.
    Choudhury A; Plapp M; Nestler B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051608. PubMed ID: 21728548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy.
    Liu T; Tao J; Cai X; Chen D; Li J; Luo L; Cheng Z; Su Y
    Heliyon; 2022 Jan; 8(1):e08704. PubMed ID: 35028474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation and Morphological Evolution of Si Phase during Electromagnetic Directional Solidification of Hypereutectic Al-Si Alloys.
    Jiang W; Yu W; Li J; You Z; Li C; Lv X
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations.
    Eiken J; Apel M; Witusiewicz VT; Zollinger J; Hecht U
    J Phys Condens Matter; 2009 Nov; 21(46):464104. PubMed ID: 21715868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of Solidification for Bi
    Yu Y; Wu Z; Cojocaru-Mirédin O; Zhu B; Wang XY; Gao N; Huang ZY; Zu FQ
    Sci Rep; 2017 May; 7(1):2463. PubMed ID: 28550312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study.
    Xing H; Dong X; Wu H; Hao G; Wang J; Chen C; Jin K
    Sci Rep; 2016 May; 6():26625. PubMed ID: 27210816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutectic colony formation: a phase-field study.
    Plapp M; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061608. PubMed ID: 12513298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.
    Wang WL; Wu YH; Li LH; Zhai W; Zhang XM; Wei B
    Sci Rep; 2015 Nov; 5():16335. PubMed ID: 26552711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Morphology and Solute Segregation of Dendrite Growth in Ti-4.5% Al Alloy: A Phase-Field Study.
    Zhang Y; Wang X; Yang S; Chen W; Hou H
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.
    Ramirez JC; Beckermann C; Karma A; Diepers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth competition during columnar solidification of seaweed microstructures : Insights from 3-D phase-field simulations.
    Ankit K; Glicksman ME
    Eur Phys J E Soft Matter; 2020 Feb; 43(2):14. PubMed ID: 32086596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase-field-crystal alloy model for late-stage solidification studies involving the interaction of solid, liquid and gas phases.
    Wang N; Kocher G; Provatas N
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.