These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15601101)

  • 1. Reduction of Cu2O islands grown on a Cu(100) surface through vacuum annealing.
    Zhou G; Yang JC
    Phys Rev Lett; 2004 Nov; 93(22):226101. PubMed ID: 15601101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of quasi-one-dimensional Cu2O structures by in situ oxidation of Cu(100).
    Zhou G; Yang JC
    Phys Rev Lett; 2002 Sep; 89(10):106101. PubMed ID: 12225206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering and oxidation using a novel ultrahigh vacuum transmission electron microscope with in situ magnetron sputtering.
    Yeadon M; Yang JC; Averback RS; Gibson JM
    Microsc Res Tech; 1998 Aug; 42(4):302-8. PubMed ID: 9779835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Reconstruction and Oxide Nucleation Due to Oxygen Interaction with Cu(001) Observed by In Situ Ultra-High Vacuum Transmission Electron Microscopy.
    Yang JC; Yeadon M; Kolasa B; Gibson JM
    Microsc Microanal; 1998 May; 4(3):334-339. PubMed ID: 9767671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vacuum annealing on the surface chemistry of electrodeposited copper(I) oxide layers as probed by positron annihilation induced auger electron spectroscopy.
    Nadesalingam MP; Mukherjee S; Somasundaram S; Chenthamarakshan CR; de Tacconi NR; Rajeshwar K; Weiss AH
    Langmuir; 2007 Feb; 23(4):1830-4. PubMed ID: 17279663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing.
    Cho J; Gao L; Tian J; Cao H; Wu W; Yu Q; Yitamben EN; Fisher B; Guest JR; Chen YP; Guisinger NP
    ACS Nano; 2011 May; 5(5):3607-13. PubMed ID: 21500843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu2O island shape transition during Cu-Au alloy oxidation.
    Zhou GW; Wang L; Birtcher RC; Baldo PM; Pearson JE; Yang JC; Eastman JA
    Phys Rev Lett; 2006 Jun; 96(22):226108. PubMed ID: 16803330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Kinetics of Copper Oxidation Investigated by In Situ Ultra-high Vacuum Transmission Electron Microscopy.
    Yang JC; Bharadwaj MD; Zhou G; Tropia L
    Microsc Microanal; 2001 Nov; 7(6):486-493. PubMed ID: 12597793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale TiO island formation on the SrTiO3(001) surface studied by in situ high-resolution transmission electron microscopy.
    Lee SB; Phillipp F; Sigle W; Rühle M
    Ultramicroscopy; 2005 Aug; 104(1):30-8. PubMed ID: 15935914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NO dissociation on Cu(111) and Cu2O(111) surfaces: a density functional theory based study.
    Padama AA; Kishi H; Arevalo RL; Moreno JL; Kasai H; Taniguchi M; Uenishi M; Tanaka H; Nishihata Y
    J Phys Condens Matter; 2012 May; 24(17):175005. PubMed ID: 22481123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures.
    Fan Q; Wang T; Liu L; Zhao J; Zhu J; Gottfried JM
    J Chem Phys; 2015 Mar; 142(10):101906. PubMed ID: 25770495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties.
    Minguez-Bacho I; Courté M; Fan HJ; Fichou D
    Nanotechnology; 2015 May; 26(18):185401. PubMed ID: 25865464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of island formation on silicon surfaces using ultra-high-vacuum scanning electron microscopy.
    Homma Y; Finnie P; Ogino T
    J Electron Microsc (Tokyo); 2000; 49(2):225-9. PubMed ID: 11108045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation.
    Li M; Curnan MT; Gresh-Sill MA; House SD; Saidi WA; Yang JC
    Nat Commun; 2021 May; 12(1):2781. PubMed ID: 33986274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ environmental TEM observation of two-stage shrinking of Cu
    Chi H; Curnan MT; Li M; Andolina CM; Saidi WA; Veser G; Yang JC
    Phys Chem Chem Phys; 2020 Feb; 22(5):2738-2742. PubMed ID: 31960012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joining copper oxide nanotube arrays driven by the nanoscale Kirkendall effect.
    Chun SR; Sasangka WA; Ng MZ; Liu Q; Du A; Zhu J; Ng CM; Liu ZQ; Chiam SY; Gan CL
    Small; 2013 Aug; 9(15):2546-52, 2545. PubMed ID: 23401318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-Cu2O-TiO2 nanojunction systems with an unusual electron-hole transportation pathway and enhanced photocatalytic properties.
    Xing J; Chen ZP; Xiao FY; Ma XY; Wen CZ; Li Z; Yang HG
    Chem Asian J; 2013 Jun; 8(6):1265-70. PubMed ID: 23495223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of ultrahigh vacuum reflection electron microscopy for the study of clean silicon surfaces in sublimation, epitaxy, and phase transitions.
    Latyshev AV; Krasilnikov AB; Aseev AL
    Microsc Res Tech; 1992 Feb; 20(4):341-51. PubMed ID: 1498349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation.
    Khanderi J; Contiu C; Engstler J; Hoffmann RC; Schneider JJ; Drochner A; Vogel H
    Nanoscale; 2011 Mar; 3(3):1102-12. PubMed ID: 21183989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides.
    Kim JY; Rodriguez JA; Hanson JC; Frenkel AI; Lee PL
    J Am Chem Soc; 2003 Sep; 125(35):10684-92. PubMed ID: 12940754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.