These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15601162)

  • 1. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency.
    Yanik MF; Suh W; Wang Z; Fan S
    Phys Rev Lett; 2004 Dec; 93(23):233903. PubMed ID: 15601162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency.
    Wang G; Lu H; Liu X
    Opt Express; 2012 Sep; 20(19):20902-7. PubMed ID: 23037214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide.
    Wang L; Li W; Jiang X
    Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation study on active control of electromagnetically induced transparency analogue in coupled photonic crystal nanobeam cavity-waveguide systems integrated with graphene.
    Jiang F; Deng CS; Lin Q; Wang LL
    Opt Express; 2019 Oct; 27(22):32122-32134. PubMed ID: 31684430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide.
    Cao G; Li H; Zhan S; He Z; Guo Z; Xu X; Yang H
    Opt Lett; 2014 Jan; 39(2):216-9. PubMed ID: 24562110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators.
    Cao G; Li H; Zhan S; Xu H; Liu Z; He Z; Wang Y
    Opt Express; 2013 Apr; 21(8):9198-205. PubMed ID: 23609630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.
    Wang Y; Xue C; Zhang Z; Zheng H; Zhang W; Yan S
    Sci Rep; 2016 Dec; 6():38891. PubMed ID: 27941895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators.
    Naweed A
    Opt Express; 2015 May; 23(10):12573-81. PubMed ID: 26074512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide.
    Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z
    Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system.
    Shi P; Zhou G; Deng J; Tian F; Chau FS
    Sci Rep; 2015 Sep; 5():14379. PubMed ID: 26415907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides.
    Varmazyari V; Habibiyan H; Ghafoorifard H
    Appl Opt; 2013 Sep; 52(26):6497-505. PubMed ID: 24085125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.
    Guo Y; Yan L; Pan W; Luo B; Wen K; Guo Z; Luo X
    Opt Express; 2012 Oct; 20(22):24348-55. PubMed ID: 23187197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.
    Wang Y; Zheng H; Xue C; Zhang W
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27463720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems.
    Zhou J; Mu D; Yang J; Han W; Di X
    Opt Express; 2011 Mar; 19(6):4856-61. PubMed ID: 21445121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic spectral splitting in multi-resonator-coupled waveguide systems.
    Zeng C
    Appl Opt; 2014 Jan; 53(1):38-43. PubMed ID: 24513987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.