These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 15601163)

  • 1. Finite-space Lyapunov exponents and pseudochaos.
    Kocarev L; Szczepanski J
    Phys Rev Lett; 2004 Dec; 93(23):234101. PubMed ID: 15601163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application.
    Liu HF; Yang YZ; Dai ZH; Yu ZH
    Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps.
    Inoue K
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistics of finite-time Lyapunov exponents in a random time-dependent potential.
    Schomerus H; Titov M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066207. PubMed ID: 12513384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
    Thiffeault JL; Boozer AH
    Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of chaos in soft interactions and signatures of nonergodicity.
    Beims MW; Manchein C; Rost JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056203. PubMed ID: 18233735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems.
    Kanno K; Uchida A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032918. PubMed ID: 24730924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-Time Lyapunov Exponents of Deep Neural Networks.
    Storm L; Linander H; Bec J; Gustavsson K; Mehlig B
    Phys Rev Lett; 2024 Feb; 132(5):057301. PubMed ID: 38364126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks.
    Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M
    Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local predictability and nonhyperbolicity through finite Lyapunov exponent distributions in two-degrees-of-freedom Hamiltonian systems.
    Vallejo JC; Viana RL; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066204. PubMed ID: 19256922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection.
    Scheel JD; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on cascading high-dimensional isomorphic chaotic maps.
    Wu Q; Zhang F; Hong Q; Wang X; Zeng Z
    Cogn Neurodyn; 2021 Feb; 15(1):157-167. PubMed ID: 33786086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.
    Rozenbaum EB; Ganeshan S; Galitski V
    Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Lyapunov exponents in billiards.
    Datseris G; Hupe L; Fleischmann R
    Chaos; 2019 Sep; 29(9):093115. PubMed ID: 31575126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
    Ott W; Rivas MA; West J
    J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaoslike behavior in nonchaotic systems at finite computation precision.
    Shi P; He D; Kang W; Fu W; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046310. PubMed ID: 11308948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor.
    Kuptsov PV; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016205. PubMed ID: 19658790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments.
    Charbonneau P; Li YC; Pfister HD; Yaida S
    Phys Rev E; 2017 Sep; 96(3-1):032129. PubMed ID: 29346975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.