These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The temperature dependence of vibronic lineshapes: linear electron-phonon coupling. Roos C; Köhn A; Gauss J; Diezemann G J Chem Phys; 2014 Oct; 141(15):154110. PubMed ID: 25338884 [TBL] [Abstract][Full Text] [Related]
7. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model. Muljarov EA; Zimmermann R Phys Rev Lett; 2007 May; 98(18):187401. PubMed ID: 17501607 [TBL] [Abstract][Full Text] [Related]
8. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions. Uskov AV; Jauho A; Tromborg B; Mork J; Lang R Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543 [TBL] [Abstract][Full Text] [Related]
9. Phonon Decoherence of Quantum Dots in Photonic Structures: Broadening of the Zero-Phonon Line and the Role of Dimensionality. Tighineanu P; Dreeßen CL; Flindt C; Lodahl P; Sørensen AS Phys Rev Lett; 2018 Jun; 120(25):257401. PubMed ID: 29979077 [TBL] [Abstract][Full Text] [Related]
10. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot. Singh R; Dutta M; Stroscio MA Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681 [TBL] [Abstract][Full Text] [Related]
12. Discrete states and carrier-phonon scattering in quantum dot population dynamics. Man MT; Lee HS Sci Rep; 2015 Feb; 5():8267. PubMed ID: 25652600 [TBL] [Abstract][Full Text] [Related]