These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15601200)

  • 1. Dephasing in quantum dots: quadratic coupling to acoustic phonons.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2004 Dec; 93(23):237401. PubMed ID: 15601200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-induced exciton dephasing in quantum dot molecules.
    Muljarov EA; Takagahara T; Zimmermann R
    Phys Rev Lett; 2005 Oct; 95(17):177405. PubMed ID: 16383869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots.
    Reigue A; Iles-Smith J; Lux F; Monniello L; Bernard M; Margaillan F; Lemaitre A; Martinez A; McCutcheon DPS; Mørk J; Hostein R; Voliotis V
    Phys Rev Lett; 2017 Jun; 118(23):233602. PubMed ID: 28644642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-markovian decoherence of localized nanotube excitons by acoustic phonons.
    Galland C; Högele A; Türeci HE; Imamoğlu A
    Phys Rev Lett; 2008 Aug; 101(6):067402. PubMed ID: 18764501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temperature dependence of vibronic lineshapes: linear electron-phonon coupling.
    Roos C; Köhn A; Gauss J; Diezemann G
    J Chem Phys; 2014 Oct; 141(15):154110. PubMed ID: 25338884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2007 May; 98(18):187401. PubMed ID: 17501607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions.
    Uskov AV; Jauho A; Tromborg B; Mork J; Lang R
    Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon Decoherence of Quantum Dots in Photonic Structures: Broadening of the Zero-Phonon Line and the Role of Dimensionality.
    Tighineanu P; Dreeßen CL; Flindt C; Lodahl P; Sørensen AS
    Phys Rev Lett; 2018 Jun; 120(25):257401. PubMed ID: 29979077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
    Masia F; Accanto N; Langbein W; Borri P
    Phys Rev Lett; 2012 Feb; 108(8):087401. PubMed ID: 22463568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete states and carrier-phonon scattering in quantum dot population dynamics.
    Man MT; Lee HS
    Sci Rep; 2015 Feb; 5():8267. PubMed ID: 25652600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralong dephasing time in InGaAs quantum dots.
    Borri P; Langbein W; Schneider S; Woggon U; Sellin RL; Ouyang D; Bimberg D
    Phys Rev Lett; 2001 Oct; 87(15):157401. PubMed ID: 11580725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
    Kennehan ER; Doucette GS; Marshall AR; Grieco C; Munson KT; Beard MC; Asbury JB
    ACS Nano; 2018 Jun; 12(6):6263-6272. PubMed ID: 29792675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dephasing by optical phonons in GaN defect single-photon emitters.
    Geng Y; Luo J; van Deurzen L; Xing HG; Jena D; Fuchs GD; Rana F
    Sci Rep; 2023 May; 13(1):8678. PubMed ID: 37248283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling exciton-phonon interactions in optically driven quantum dots.
    Nazir A; McCutcheon DP
    J Phys Condens Matter; 2016 Mar; 28(10):103002. PubMed ID: 26882465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots.
    Oron D; Aharoni A; de Mello Donega C; van Rijssel J; Meijerink A; Banin U
    Phys Rev Lett; 2009 May; 102(17):177402. PubMed ID: 19518829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposed quenching of phonon-induced processes in photoexcited quantum dots due to electron-hole asymmetries.
    Nysteen A; Kaer P; Mork J
    Phys Rev Lett; 2013 Feb; 110(8):087401. PubMed ID: 23473200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.