These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 15601570)

  • 21. Adult stem cell sources for skeletal and smooth muscle tissue engineering.
    Salemi S; Prange JA; Baumgartner V; Mohr-Haralampieva D; Eberli D
    Stem Cell Res Ther; 2022 Apr; 13(1):156. PubMed ID: 35410452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering skeletal muscle tissue in bioreactor systems.
    An Y; Li D
    Chin Med J (Engl); 2014; 127(23):4130-9. PubMed ID: 25430462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of vaginal tissue in vivo.
    De Filippo RE; Yoo JJ; Atala A
    Tissue Eng; 2003 Apr; 9(2):301-6. PubMed ID: 12740092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators.
    Shimizu K; Fujita H; Nagamori E
    J Biosci Bioeng; 2013 Feb; 115(2):115-21. PubMed ID: 23026451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
    Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A
    Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct.
    Shah R; Sinanan AC; Knowles JC; Hunt NP; Lewis MP
    Biomaterials; 2005 May; 26(13):1497-505. PubMed ID: 15522751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.
    Lee PH; Vandenburgh HH
    Tissue Eng Part A; 2013 Oct; 19(19-20):2147-55. PubMed ID: 23574457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Satellite cells delivered by micro-patterned scaffolds: a new strategy for cell transplantation in muscle diseases.
    Boldrin L; Elvassore N; Malerba A; Flaibani M; Cimetta E; Piccoli M; Baroni MD; Gazzola MV; Messina C; Gamba P; Vitiello L; De Coppi P
    Tissue Eng; 2007 Feb; 13(2):253-62. PubMed ID: 17504060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new approach to tissue engineering of vascularized skeletal muscle.
    Bach AD; Arkudas A; Tjiawi J; Polykandriotis E; Kneser U; Horch RE; Beier JP
    J Cell Mol Med; 2006; 10(3):716-26. PubMed ID: 16989731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation.
    Choi JW; Kang SU; Kim YE; Park JK; Yang SS; Kim YS; Lee YS; Lee Y; Kim CH
    Sci Rep; 2016 Jun; 6():28829. PubMed ID: 27349181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle-derived stem cells: potential for muscle regeneration.
    Huard J; Cao B; Qu-Petersen Z
    Birth Defects Res C Embryo Today; 2003 Aug; 69(3):230-7. PubMed ID: 14671776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.
    Kesireddy V
    Int J Nanomedicine; 2016; 11():1461-73. PubMed ID: 27114706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic cloning and tissue engineering.
    Koh CJ; Atala A
    Curr Top Dev Biol; 2004; 60():1-15. PubMed ID: 15094294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.
    Koning M; Werker PM; van Luyn MJ; Harmsen MC
    Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stem Cells for Skeletal Muscle Tissue Engineering.
    Pantelic MN; Larkin LM
    Tissue Eng Part B Rev; 2018 Oct; 24(5):373-391. PubMed ID: 29652595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss.
    Quarta M; Cromie M; Chacon R; Blonigan J; Garcia V; Akimenko I; Hamer M; Paine P; Stok M; Shrager JB; Rando TA
    Nat Commun; 2017 Jun; 8():15613. PubMed ID: 28631758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroactive biomaterial surface engineering effects on muscle cells differentiation.
    Ribeiro S; Gomes AC; Etxebarria I; Lanceros-Méndez S; Ribeiro C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():868-874. PubMed ID: 30184816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue engineering in urology.
    Gustafson CJ; Kratz G
    Curr Opin Urol; 2001 May; 11(3):275-9. PubMed ID: 11371780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.