These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 15601693)
1. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. Zhang YH; Lynd LR J Bacteriol; 2005 Jan; 187(1):99-106. PubMed ID: 15601693 [TBL] [Abstract][Full Text] [Related]
2. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Zhang Y; Lynd LR Anal Chem; 2003 Jan; 75(2):219-27. PubMed ID: 12553755 [TBL] [Abstract][Full Text] [Related]
3. Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. Dror TW; Rolider A; Bayer EA; Lamed R; Shoham Y J Bacteriol; 2005 Apr; 187(7):2261-6. PubMed ID: 15774868 [TBL] [Abstract][Full Text] [Related]
4. Optimization of affinity digestion for the isolation of cellulosomes from Clostridium thermocellum. St Brice LA; Shao X; Izquierdo JA; Lynd LR Prep Biochem Biotechnol; 2014; 44(2):206-16. PubMed ID: 24152105 [TBL] [Abstract][Full Text] [Related]
5. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [TBL] [Abstract][Full Text] [Related]
6. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM; Weimer PJ Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [TBL] [Abstract][Full Text] [Related]
7. Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum. Lynd LR; Grethlein HE; Wolkin RH Appl Environ Microbiol; 1989 Dec; 55(12):3131-9. PubMed ID: 16348075 [TBL] [Abstract][Full Text] [Related]
8. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. Gold ND; Martin VJ J Bacteriol; 2007 Oct; 189(19):6787-95. PubMed ID: 17644599 [TBL] [Abstract][Full Text] [Related]
9. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422 [TBL] [Abstract][Full Text] [Related]
10. Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Riederer A; Takasuka TE; Makino S; Stevenson DM; Bukhman YV; Elsen NL; Fox BG Appl Environ Microbiol; 2011 Feb; 77(4):1243-53. PubMed ID: 21169455 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent. Dror TW; Morag E; Rolider A; Bayer EA; Lamed R; Shoham Y J Bacteriol; 2003 May; 185(10):3042-8. PubMed ID: 12730163 [TBL] [Abstract][Full Text] [Related]
12. Deletion of the Cel48S cellulase from Clostridium thermocellum. Olson DG; Tripathi SA; Giannone RJ; Lo J; Caiazza NC; Hogsett DA; Hettich RL; Guss AM; Dubrovsky G; Lynd LR Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17727-32. PubMed ID: 20837514 [TBL] [Abstract][Full Text] [Related]
13. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495 [TBL] [Abstract][Full Text] [Related]
14. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Lu Y; Zhang YH; Lynd LR Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16165-9. PubMed ID: 17060624 [TBL] [Abstract][Full Text] [Related]
15. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [TBL] [Abstract][Full Text] [Related]
16. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Ellis LD; Holwerda EK; Hogsett D; Rogers S; Shao X; Tschaplinski T; Thorne P; Lynd LR Bioresour Technol; 2012 Jan; 103(1):293-9. PubMed ID: 22055095 [TBL] [Abstract][Full Text] [Related]
17. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Zhang YH; Lynd LR Proc Natl Acad Sci U S A; 2005 May; 102(20):7321-5. PubMed ID: 15883376 [TBL] [Abstract][Full Text] [Related]
18. Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum. Li R; Feng Y; Liu S; Qi K; Cui Q; Liu YJ Microb Biotechnol; 2018 Sep; 11(5):905-916. PubMed ID: 29943510 [TBL] [Abstract][Full Text] [Related]
19. Organization and distribution of the cellulosome in Clostridium thermocellum. Bayer EA; Setter E; Lamed R J Bacteriol; 1985 Aug; 163(2):552-9. PubMed ID: 4019409 [TBL] [Abstract][Full Text] [Related]
20. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Gefen G; Anbar M; Morag E; Lamed R; Bayer EA Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10298-303. PubMed ID: 22689961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]