These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15601693)

  • 21. Coculture with hemicellulose-fermenting microbes reverses inhibition of corn fiber solubilization by Clostridium thermocellum at elevated solids loadings.
    Beri D; Herring CD; Blahova S; Poudel S; Giannone RJ; Hettich RL; Lynd LR
    Biotechnol Biofuels; 2021 Jan; 14(1):24. PubMed ID: 33461608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the cellulase system produced by three strains of Clostridium thermocellum on cellobiose and Avicel.
    Bhat S; Goodenough PW; Owen E; Brooker B; Stenning R; Bhat MK
    Biochem Soc Trans; 1995 Nov; 23(4):587S. PubMed ID: 8654772
    [No Abstract]   [Full Text] [Related]  

  • 24. Development and evaluation of methods to infer biosynthesis and substrate consumption in cultures of cellulolytic microorganisms.
    Holwerda EK; Ellis LD; Lynd LR
    Biotechnol Bioeng; 2013 Sep; 110(9):2380-8. PubMed ID: 23568345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of cellulase synthesis in Acetivibrio cellulolyticus.
    Saddler JN; Khan AW; Martin SM
    Microbios; 1980; 28(112):97-106. PubMed ID: 7207219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum.
    Zhang YH; Lynd LR
    Appl Environ Microbiol; 2004 Mar; 70(3):1563-9. PubMed ID: 15006779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate.
    Morrell-Falvey JL; Elkins JG; Wang ZW
    J Environ Sci (China); 2015 Aug; 34():212-8. PubMed ID: 26257364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Derepressed synthesis of cellulase by Cellulomonas.
    Stewart BJ; Leatherwood JM
    J Bacteriol; 1976 Nov; 128(2):609-15. PubMed ID: 824282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
    Burton E; Martin VJ
    Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose promotes extracellular assembly of Clostridium cellulovorans cellulosomes.
    Matano Y; Park JS; Goldstein MA; Doi RH
    J Bacteriol; 1994 Nov; 176(22):6952-6. PubMed ID: 7961457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship Between Substrate Concentration and Fermentation Product Ratios in Clostridium thermocellum Cultures.
    Brener D; Johnson BF
    Appl Environ Microbiol; 1984 May; 47(5):1126-9. PubMed ID: 16346540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum.
    Zhang P; Wang B; Xiao Q; Wu S
    Bioresour Technol; 2015 Aug; 190():36-43. PubMed ID: 25919935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome.
    Kruus K; Andreacchi A; Wang WK; Wu JH
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):399-404. PubMed ID: 8597541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose.
    Bayer EA; Lamed R
    J Bacteriol; 1986 Sep; 167(3):828-36. PubMed ID: 3745121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Extracellular Cellulase Activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414.
    Ng TK; Zeikus JG
    Appl Environ Microbiol; 1981 Aug; 42(2):231-40. PubMed ID: 16345823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel.
    Chinn MS; Nokes SE; Strobel HJ
    Bioresour Technol; 2008 May; 99(7):2664-71. PubMed ID: 17629479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose.
    Zverlov VV; Schantz N; Schwarz WH
    FEMS Microbiol Lett; 2005 Aug; 249(2):353-8. PubMed ID: 16006068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity.
    Maki ML; Armstrong L; Leung KT; Qin W
    Bioengineered; 2013; 4(1):15-20. PubMed ID: 22922214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.