These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 15601857)
1. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Cao D; Wang Z; Zhang CL; Oh J; Xing W; Li S; Richardson JA; Wang DZ; Olson EN Mol Cell Biol; 2005 Jan; 25(1):364-76. PubMed ID: 15601857 [TBL] [Abstract][Full Text] [Related]
2. Acetylation of myocardin is required for the activation of cardiac and smooth muscle genes. Cao D; Wang C; Tang R; Chen H; Zhang Z; Tatsuguchi M; Wang DZ J Biol Chem; 2012 Nov; 287(46):38495-504. PubMed ID: 23007391 [TBL] [Abstract][Full Text] [Related]
3. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501 [TBL] [Abstract][Full Text] [Related]
4. Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression. Qiu P; Li L Circ Res; 2002 May; 90(8):858-65. PubMed ID: 11988486 [TBL] [Abstract][Full Text] [Related]
5. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Wang DZ; Olson EN Curr Opin Genet Dev; 2004 Oct; 14(5):558-66. PubMed ID: 15380248 [TBL] [Abstract][Full Text] [Related]
6. Myocardin is a master regulator of smooth muscle gene expression. Wang Z; Wang DZ; Pipes GC; Olson EN Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7129-34. PubMed ID: 12756293 [TBL] [Abstract][Full Text] [Related]
8. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904 [TBL] [Abstract][Full Text] [Related]
9. The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Ma Y; Li Q; Li A; Wei Y; Long P; Jiang X; Sun F; Weiskirchen R; Wu B; Liang C; Grötzinger J; Wei Y; Yu W; Mercola M; Huang Y; Wang J; Yu Y; Schwartz RJ Nucleic Acids Res; 2017 Apr; 45(6):3046-3058. PubMed ID: 27940555 [TBL] [Abstract][Full Text] [Related]
10. Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Rensen SS; Niessen PM; Long X; Doevendans PA; Miano JM; van Eys GJ Cardiovasc Res; 2006 Apr; 70(1):136-45. PubMed ID: 16451796 [TBL] [Abstract][Full Text] [Related]
11. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Pipes GC; Sinha S; Qi X; Zhu CH; Gallardo TD; Shelton J; Creemers EE; Sutherland L; Richardson JA; Garry DJ; Wright WE; Owens GK; Olson EN Dev Biol; 2005 Dec; 288(2):502-13. PubMed ID: 16310178 [TBL] [Abstract][Full Text] [Related]
12. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. Du KL; Chen M; Li J; Lepore JJ; Mericko P; Parmacek MS J Biol Chem; 2004 Apr; 279(17):17578-86. PubMed ID: 14970199 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Utley RT; Ikeda K; Grant PA; Côté J; Steger DJ; Eberharter A; John S; Workman JL Nature; 1998 Jul; 394(6692):498-502. PubMed ID: 9697775 [TBL] [Abstract][Full Text] [Related]
14. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. Shankaranarayanan P; Chaitidis P; Kühn H; Nigam S J Biol Chem; 2001 Nov; 276(46):42753-60. PubMed ID: 11509556 [TBL] [Abstract][Full Text] [Related]
15. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. van Tuyn J; Knaän-Shanzer S; van de Watering MJ; de Graaf M; van der Laarse A; Schalij MJ; van der Wall EE; de Vries AA; Atsma DE Cardiovasc Res; 2005 Aug; 67(2):245-55. PubMed ID: 15907818 [TBL] [Abstract][Full Text] [Related]
16. Regulation of E2F1 activity by acetylation. Martínez-Balbás MA; Bauer UM; Nielsen SJ; Brehm A; Kouzarides T EMBO J; 2000 Feb; 19(4):662-71. PubMed ID: 10675335 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Pavan Kumar P; Purbey PK; Sinha CK; Notani D; Limaye A; Jayani RS; Galande S Mol Cell; 2006 Apr; 22(2):231-43. PubMed ID: 16630892 [TBL] [Abstract][Full Text] [Related]
18. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Yoshida T; Sinha S; Dandré F; Wamhoff BR; Hoofnagle MH; Kremer BE; Wang DZ; Olson EN; Owens GK Circ Res; 2003 May; 92(8):856-64. PubMed ID: 12663482 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Doyen CM; An W; Angelov D; Bondarenko V; Mietton F; Studitsky VM; Hamiche A; Roeder RG; Bouvet P; Dimitrov S Mol Cell Biol; 2006 Feb; 26(3):1156-64. PubMed ID: 16428466 [TBL] [Abstract][Full Text] [Related]
20. Functional interplay between CBP and PCAF in acetylation and regulation of transcription factor KLF13 activity. Song CZ; Keller K; Chen Y; Stamatoyannopoulos G J Mol Biol; 2003 May; 329(2):207-15. PubMed ID: 12758070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]