BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1560227)

  • 21. Sodium-dependent uptake of nucleosides by dissociated brain cells from the rat.
    Johnston ME; Geiger JD
    J Neurochem; 1989 Jan; 52(1):75-81. PubMed ID: 2908894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of [35S]-ATP alpha S and [3H]-alpha, beta-MeATP binding sites in rat brain cortical synaptosomes: regulation of ligand binding by divalent cations.
    Schäfer R; Reiser G
    Br J Pharmacol; 1997 Jul; 121(5):913-22. PubMed ID: 9222547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual cardiac microdialysis to assess drug-induced changes in interstitial purine metabolites: adenosine deaminase inhibition versus adenosine kinase inhibition.
    Manthei SA; Reiling CM; Van Wylen DG
    Cardiovasc Res; 1998 Jan; 37(1):171-8. PubMed ID: 9539871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of nucleoside transport inhibitors and adenine/ribose supply on ATP concentration and adenosine production in cardiac myocytes.
    Kalsi KK; Smolenski RT; Yacoub MH
    Mol Cell Biochem; 1998 Mar; 180(1-2):193-9. PubMed ID: 9546646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential cardioprotection with selective inhibitors of adenosine metabolism and transport: role of purine release in ischemic and reperfusion injury.
    Abd-Elfattah AS; Jessen ME; Lekven J; Wechsler AS
    Mol Cell Biochem; 1998 Mar; 180(1-2):179-91. PubMed ID: 9546645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal interstitial adenosine metabolism during ischemia in dogs.
    Nishiyama A; Kimura S; He H; Miura K; Rahman M; Fujisawa Y; Fukui T; Abe Y
    Am J Physiol Renal Physiol; 2001 Feb; 280(2):F231-8. PubMed ID: 11208598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of dopamine and noradrenaline transport in synaptosomes from cerebellum, striatum and frontal cortex of normal and reeler mice.
    Efthimiopoulos S; Giompres P; Valcana T
    J Neurosci Res; 1991 Aug; 29(4):510-9. PubMed ID: 1838778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-administration of adenosine kinase and deaminase inhibitors produces supra-additive potentiation of N-methyl-D-aspartate-evoked adenosine formation in cortex.
    Hebb MO; White TD
    Eur J Pharmacol; 1998 Mar; 344(2-3):121-5. PubMed ID: 9600645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine transport in perfused rat kidney and renal cortical membrane vesicles.
    Trimble ME; Coulson R
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F794-803. PubMed ID: 6742130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs.
    Pardridge WM; Yoshikawa T; Kang YS; Miller LP
    J Pharmacol Exp Ther; 1994 Jan; 268(1):14-8. PubMed ID: 8301550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleoside transporter-mediated uptake and release of [3H]L-adenosine in DDT1 MF-2 smooth muscle cells.
    Foga IO; Geiger JD; Parkinson FE
    Eur J Pharmacol; 1996 Dec; 318(2-3):455-60. PubMed ID: 9016938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardioprotection with adenosine metabolism inhibitors in ischemic-reperfused mouse heart.
    Peart J; Matherne GP; Cerniway RJ; Headrick JP
    Cardiovasc Res; 2001 Oct; 52(1):120-9. PubMed ID: 11557240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increases in interstitial adenosine and cerebral blood flow with inhibition of adenosine kinase and adenosine deaminase.
    Sciotti VM; Van Wylen DG
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):201-7. PubMed ID: 8436611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adenosine transport by a variant of C1300 murine neuroblastoma cells deficient in adenosine kinase.
    Green RD
    Biochim Biophys Acta; 1980 May; 598(2):366-74. PubMed ID: 6246950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and metabolism of adenosine in the perfused guinea-pig placenta.
    Wheeler CP; Yudilevich DL
    J Physiol; 1988 Nov; 405():511-26. PubMed ID: 3255799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Irreversible binding and recovery of the norepinephrine uptake system using an alkylating derivative of norepinephrine.
    Baker SP; Standifer KM; Kalberg CJ; Pitha J; Sumners C
    J Neurochem; 1988 Apr; 50(4):1044-52. PubMed ID: 2894406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic-3',5'-guanosine monophosphate-stimulated phosphodiesterase to reverse hypoxic pulmonary vasoconstriction in the perfused rat lung.
    Haynes J; Killilea DW; Peterson PD; Thompson WJ
    J Pharmacol Exp Ther; 1996 Feb; 276(2):752-7. PubMed ID: 8632346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High affinity glutamate transport in rat cortical neurons in culture.
    Wang GJ; Chung HJ; Schnuer J; Pratt K; Zable AC; Kavanaugh MP; Rosenberg PA
    Mol Pharmacol; 1998 Jan; 53(1):88-96. PubMed ID: 9443935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of extracellular and intracellular adenosine production: understanding the transmembranous concentration gradient.
    Deussen A; Stappert M; Schäfer S; Kelm M
    Circulation; 1999 Apr; 99(15):2041-7. PubMed ID: 10209010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.