These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1560231)

  • 41. Axonal regeneration, but not myelination, is partially dependent on local cholesterol reutilization in regenerating nerve.
    Goodrum JF; Brown JC; Fowler KA; Bouldin TW
    J Neuropathol Exp Neurol; 2000 Nov; 59(11):1002-10. PubMed ID: 11089578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Schwann cells-axon interaction in myelination.
    Taveggia C
    Curr Opin Neurobiol; 2016 Aug; 39():24-9. PubMed ID: 27089429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve.
    Jang SY; Shin YK; Park SY; Park JY; Rha SH; Kim JK; Lee HJ; Park HT
    PLoS One; 2015; 10(1):e0116624. PubMed ID: 25581066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon.
    Gupta SK; Pringle J; Poduslo JF; Mezei C
    J Neurosci Res; 1993 Jan; 34(1):14-23. PubMed ID: 7678657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Establishing Myelinating Cocultures Using Human iPSC-Derived Sensory Neurons to Investigate Axonal Degeneration and Demyelination.
    Clark AJ
    Methods Mol Biol; 2020; 2143():111-129. PubMed ID: 32524476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An approach to comprehensive genome and proteome expression analyses in Schwann cells and neurons during peripheral nerve myelin formation.
    Kangas SM; Ohlmeier S; Sormunen R; Jouhilahti EM; Peltonen S; Peltonen J; Heape AM
    J Neurochem; 2016 Sep; 138(6):830-44. PubMed ID: 27364987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential expression of sodium channels in acutely isolated myelinating and non-myelinating Schwann cells of rabbits.
    Chiu SY
    J Physiol; 1993 Oct; 470():485-99. PubMed ID: 8308740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons.
    Radtke C; Akiyama Y; Lankford KL; Vogt PM; Krause DS; Kocsis JD
    Neurosci Lett; 2005 Oct; 387(2):85-9. PubMed ID: 16084645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly.
    Poduslo JF; Berg CT; Dyck PJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1864-6. PubMed ID: 6584919
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel method for studying myelination in vivo reveals that EDTA is a potent inhibitor of myelin protein and mRNA expression during development of the rat sciatic nerve.
    Meintanis S; Thomaidou D; Jessen KR; Mirsky R; Matsas R
    Glia; 2004 Nov; 48(2):132-44. PubMed ID: 15378656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Recent data on Schwann cells].
    Massiou H; Hauw JJ; Bourre JM; Jacque C; Baumann N
    Pathol Biol (Paris); 1984 Jan; 32(1):59-69. PubMed ID: 6322095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment.
    Gillespie CS; Sherman DL; Blair GE; Brophy PJ
    Neuron; 1994 Mar; 12(3):497-508. PubMed ID: 8155317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of in vitro peripheral myelin formation by monoclonal anti-galactocerebroside.
    Ranscht B; Wood PM; Bunge RP
    J Neurosci; 1987 Sep; 7(9):2936-47. PubMed ID: 3625279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in excitable membrane properties in Schwann cells of adult rabbit sciatic nerves following nerve transection.
    Chiu SY
    J Physiol; 1988 Feb; 396():173-88. PubMed ID: 2457688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Endogenous cerebellar soluble lectin and its ligands in central nervous system myelin of quaking and jimpy mutant mice.
    Kuchler S; Zanetta JP; Zaepfel M; Badache A; Sarliève LL; Gumpel M; Baumann N; Vincendon G
    Dev Neurosci; 1990; 12(6):382-97. PubMed ID: 2076671
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dok4 is involved in Schwann cell myelination and axonal interaction in vitro.
    Blugeon C; Le Crom S; Richard L; Vallat JM; Charnay P; Decker L
    Glia; 2011 Mar; 59(3):351-62. PubMed ID: 21264944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for an early role for myelin-associated glycoprotein in the process of myelination.
    Owens GC; Bunge RP
    Glia; 1989; 2(2):119-28. PubMed ID: 2470674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Polarity Protein Pals1 Regulates Radial Sorting of Axons.
    Zollinger DR; Chang KJ; Baalman K; Kim S; Rasband MN
    J Neurosci; 2015 Jul; 35(29):10474-84. PubMed ID: 26203142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation.
    Zorick TS; Syroid DE; Arroyo E; Scherer SS; Lemke G
    Mol Cell Neurosci; 1996; 8(2-3):129-45. PubMed ID: 8918830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Association of microtubules and axonal RNA transferred from myelinating Schwann cells in rat sciatic nerve.
    Canclini L; Farias J; Di Paolo A; Sotelo-Silveira JR; Folle G; Kun A; Sotelo JR
    PLoS One; 2020; 15(5):e0233651. PubMed ID: 32469980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.