These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15602594)

  • 1. New procedure for the preparation of highly sterically hindered alkenes using a hypervalent iodine reagent.
    ter Wiel MK; Vicario J; Davey SG; Meetsma A; Feringa BL
    Org Biomol Chem; 2005 Jan; 3(1):28-30. PubMed ID: 15602594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efficient synthesis of morphinandienone alkaloids by using a combination of hypervalent iodine(III) reagent and heteropoly acid.
    Hamamoto H; Shiozaki Y; Nambu H; Hata K; Tohma H; Kita Y
    Chemistry; 2004 Oct; 10(20):4977-82. PubMed ID: 15372696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypervalent iodine-mediated aziridination of alkenes: mechanistic insights and requirements for catalysis.
    Richardson RD; Desaize M; Wirth T
    Chemistry; 2007; 13(23):6745-54. PubMed ID: 17514676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes.
    ter Wiel MK; van Delden RA; Meetsma A; Feringa BL
    J Am Chem Soc; 2005 Oct; 127(41):14208-22. PubMed ID: 16218615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new synthesis of dienone lactones using a combination of hypervalent iodine(III) reagent and heteropoly acid.
    Hata K; Hamamoto H; Shiozaki Y; Kita Y
    Chem Commun (Camb); 2005 May; (19):2465-7. PubMed ID: 15886772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of highly substituted cyclohexenes via mixed Lewis acid-catalyzed Diels-Alder reactions of highly substituted dienes and dienophiles.
    Jung ME; Ho D; Chu HV
    Org Lett; 2005 Apr; 7(8):1649-51. PubMed ID: 15816774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new entry to carbocyclic nucleosides: oxidative coupling reaction of cycloalkenylsilanes with a nucleobase mediated by hypervalent iodine reagent.
    Yoshimura Y; Ohta M; Imahori T; Imamichi T; Takahata H
    Org Lett; 2008 Aug; 10(16):3449-52. PubMed ID: 18613695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Benziodoxole-Based Hypervalent Iodine(III) Compound Functioning as a Peptide Coupling Reagent.
    Qiu LJ; Liu D; Zheng K; Zhang MT; Zhang C
    Front Chem; 2020; 8():183. PubMed ID: 32258000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sterically hindered olefins: a case of E- and Z-di-tert-butyl alpha,beta-unsaturated acids.
    Ionkin AS; Marshall WJ; Fish BM
    Org Lett; 2008 Jun; 10(11):2303-5. PubMed ID: 18459796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypervalent iodine reagents as a new entrance to organocatalysts.
    Dohi T; Kita Y
    Chem Commun (Camb); 2009 Apr; (16):2073-85. PubMed ID: 19360157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free oxidative cyclization of urea-tethered alkenes with hypervalent iodine.
    Cochran BM; Michael FE
    Org Lett; 2008 Nov; 10(21):5039-42. PubMed ID: 18841990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation.
    Eisenberger P; Gischig S; Togni A
    Chemistry; 2006 Mar; 12(9):2579-86. PubMed ID: 16402401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, stereochemistry, and photochemical and thermal behaviour of bis-tert-butyl substituted overcrowded alkenes.
    Ter Wiel MK; Kwit MG; Meetsma A; Feringa BL
    Org Biomol Chem; 2007 Jan; 5(1):87-96. PubMed ID: 17164911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Michael-aldol reaction by use of sterically hindered aluminum aryloxides as Lewis acids: an easy approach to cyclobutane amino acids.
    Avenoza A; Busto JH; Canal N; Peregrina JM; Pérez-Fernández M
    Org Lett; 2005 Aug; 7(16):3597-600. PubMed ID: 16048351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypervalent iodine chemistry in synthesis: scope and new directions.
    Wirth T
    Angew Chem Int Ed Engl; 2005 Jun; 44(24):3656-65. PubMed ID: 15828037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of hypervalent iodine reagents with palladium: mechanisms and applications in organic synthesis.
    Deprez NR; Sanford MS
    Inorg Chem; 2007 Mar; 46(6):1924-35. PubMed ID: 17348723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stereoselective metal-free oxyaminations using chiral hypervalent iodine reagents.
    Farid U; Wirth T
    Angew Chem Int Ed Engl; 2012 Apr; 51(14):3462-5. PubMed ID: 22278888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-mediated formation of trifluoromethyl ethers from alcohols and hypervalent iodine trifluoromethylation reagents.
    Koller R; Stanek K; Stolz D; Aardoom R; Niedermann K; Togni A
    Angew Chem Int Ed Engl; 2009; 48(24):4332-6. PubMed ID: 19434641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine(III)-promoted intermolecular diamination of alkenes.
    Souto JA; González Y; Iglesias A; Zian D; Lishchynskyi A; Muñiz K
    Chem Asian J; 2012 May; 7(5):1103-11. PubMed ID: 22383364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid formation of hindered cores using an oxidative Prins process.
    Andrez JC; Giroux MA; Lucien J; Canesi S
    Org Lett; 2010 Oct; 12(19):4368-71. PubMed ID: 20812675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.