BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15602686)

  • 1. Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum.
    Kaspera R; Krings U; Nanzad T; Berger RG
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):477-83. PubMed ID: 15602686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.
    Sowden RJ; Yasmin S; Rees NH; Bell SG; Wong LL
    Org Biomol Chem; 2005 Jan; 3(1):57-64. PubMed ID: 15602599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.
    Krügener S; Krings U; Zorn H; Berger RG
    Bioresour Technol; 2010 Jan; 101(2):457-62. PubMed ID: 19765983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nootkatone--a biotechnological challenge.
    Fraatz MA; Berger RG; Zorn H
    Appl Microbiol Biotechnol; 2009 May; 83(1):35-41. PubMed ID: 19333595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.
    Gavira C; Höfer R; Lesot A; Lambert F; Zucca J; Werck-Reichhart D
    Metab Eng; 2013 Jul; 18():25-35. PubMed ID: 23518241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis).
    Cankar K; van Houwelingen A; Goedbloed M; Renirie R; de Jong RM; Bouwmeester H; Bosch D; Sonke T; Beekwilder J
    FEBS Lett; 2014 Mar; 588(6):1001-7. PubMed ID: 24530525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.
    Beekwilder J; van Houwelingen A; Cankar K; van Dijk AD; de Jong RM; Stoopen G; Bouwmeester H; Achkar J; Sonke T; Bosch D
    Plant Biotechnol J; 2014 Feb; 12(2):174-82. PubMed ID: 24112147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.
    Cankar K; van Houwelingen A; Bosch D; Sonke T; Bouwmeester H; Beekwilder J
    FEBS Lett; 2011 Jan; 585(1):178-82. PubMed ID: 21115006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba.
    Qin JC; Zhang YM; Gao JM; Bai MS; Yang SX; Laatsch H; Zhang AL
    Bioorg Med Chem Lett; 2009 Mar; 19(6):1572-4. PubMed ID: 19246197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odor-active alcohols from the fungal transformation of alpha-farnesene.
    Krings U; Hardebusch B; Albert D; Berger RG; Maróstica M; Pastore GM
    J Agric Food Chem; 2006 Nov; 54(24):9079-84. PubMed ID: 17117793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sch 213766, a novel chemokine receptor CCR-5 inhibitor from Chaetomium globosum.
    Yang SW; Mierzwa R; Terracciano J; Patel M; Gullo V; Wagner N; Baroudy B; Puar M; Chan TM; Chu M
    J Antibiot (Tokyo); 2007 Aug; 60(8):524-8. PubMed ID: 17827664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms.
    Furusawa M; Hashimoto T; Noma Y; Asakawa Y
    Chem Pharm Bull (Tokyo); 2005 Nov; 53(11):1423-9. PubMed ID: 16272725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone.
    Omarini AB; Plagemann I; Schimanski S; Krings U; Berger RG
    Bioresour Technol; 2014 Nov; 171():113-9. PubMed ID: 25189516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.
    Wriessnegger T; Augustin P; Engleder M; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Zellnig G; Schwab H; Pichler H
    Metab Eng; 2014 Jul; 24():18-29. PubMed ID: 24747046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system.
    Girhard M; Machida K; Itoh M; Schmid RD; Arisawa A; Urlacher VB
    Microb Cell Fact; 2009 Jul; 8():36. PubMed ID: 19591681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica.
    Li X; Ren JN; Fan G; He J; Zhang LL; Pan SY
    Microbiol Res; 2022 Jul; 260():127042. PubMed ID: 35483313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of valencene by bio- and chemical transformation.
    Asakawa Y; Hashimoto T; Noma Y; Furusawa M
    Nat Prod Commun; 2013 Jul; 8(7):859-62. PubMed ID: 23980411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of (+)-valencene in the mushroom-forming fungus S. commune.
    Scholtmeijer K; Cankar K; Beekwilder J; Wösten HA; Lugones LG; Bosch D
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):5059-68. PubMed ID: 24531273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically important eremophilane sesquiterpenes from alaska cedar heartwood essential oil and their semi-synthetic derivatives.
    Khasawneh MA; Xiong Y; Peralta-Cruz J; Karchesy JJ
    Molecules; 2011 Jun; 16(6):4775-85. PubMed ID: 21654582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.