BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15602813)

  • 1. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress.
    De Ronde JA; Cress WA; Krüger GH; Strasser RJ; Van Staden J
    J Plant Physiol; 2004 Nov; 161(11):1211-24. PubMed ID: 15602813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress.
    Simon-Sarkadi L; Kocsy G; Várhegyi A; Galiba G; de Ronde JA
    J Agric Food Chem; 2005 Sep; 53(19):7512-7. PubMed ID: 16159180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate.
    Giberti S; Funck D; Forlani G
    New Phytol; 2014 May; 202(3):911-919. PubMed ID: 24467670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of proline synthesis during Arabidopsis reproductive development.
    Funck D; Winter G; Baumgarten L; Forlani G
    BMC Plant Biol; 2012 Oct; 12():191. PubMed ID: 23062072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.
    Rizhsky L; Liang H; Shuman J; Shulaev V; Davletova S; Mittler R
    Plant Physiol; 2004 Apr; 134(4):1683-96. PubMed ID: 15047901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation.
    Liu W; Wei JW; Shan Q; Liu M; Xu J; Gong B
    Plant Physiol; 2024 May; 195(2):1038-1052. PubMed ID: 38478428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress.
    Essemine J; Govindachary S; Ammar S; Bouzid S; Carpentier R
    Plant Physiol Biochem; 2011 Mar; 49(3):235-43. PubMed ID: 21256041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.
    Savitch LV; Barker-Astrom J; Ivanov AG; Hurry V; Oquist G; Huner NP; Gardeström P
    Planta; 2001 Dec; 214(2):295-303. PubMed ID: 11800395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance.
    Zhao X; Xu M; Wei R; Liu Y
    PLoS One; 2015; 10(6):e0131272. PubMed ID: 26098425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of drought stress at supraoptimal temperature on polyamine concentrations in transgenic soybean with increased proline levels.
    Simon-Sarkadi L; Kocsy G; Várhegyi A; Galiba G; de Ronde JA
    Z Naturforsch C J Biosci; 2006; 61(11-12):833-9. PubMed ID: 17294695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.
    Li Y; Zhang J; Zhang J; Hao L; Hua J; Duan L; Zhang M; Li Z
    Plant Biotechnol J; 2013 Aug; 11(6):747-58. PubMed ID: 23581509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor.
    Zhang X; Wollenweber B; Jiang D; Liu F; Zhao J
    J Exp Bot; 2008; 59(4):839-48. PubMed ID: 18272919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature.
    Chen J; Burke JJ; Xin Z
    BMC Plant Biol; 2018 Jan; 18(1):11. PubMed ID: 29320985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools.
    Marchese L; Olavarria K; Mantilla BS; Avila CC; Souza ROO; Damasceno FS; Elias MC; Silber AM
    Biochem J; 2020 May; 477(10):1827-1845. PubMed ID: 32315030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.
    Essemine J; Govindachary S; Ammar S; Bouzid S; Carpentier R
    J Plant Physiol; 2011 Sep; 168(13):1526-33. PubMed ID: 21458884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress.
    Kandoi D; Mohanty S; Tripathy BC
    Protoplasma; 2018 Mar; 255(2):547-563. PubMed ID: 28942523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein.
    Gururani MA; Upadhyaya CP; Strasser RJ; Woong YJ; Park SW
    Plant Physiol Biochem; 2012 Sep; 58():182-94. PubMed ID: 22824424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.
    Sengupta D; Guha A; Reddy AR
    J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
    Muramatsu H; Mihara H; Kakutani R; Yasuda M; Ueda M; Kurihara T; Esaki N
    J Biol Chem; 2005 Feb; 280(7):5329-35. PubMed ID: 15561717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.