These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15602881)

  • 1. Computer-aided screening for zebrafish embryonic motility mutants.
    Lessman CA
    Methods Cell Biol; 2004; 76():285-313. PubMed ID: 15602881
    [No Abstract]   [Full Text] [Related]  

  • 2. Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b.
    Dixon Fox M; Bruce AE
    Development; 2009 May; 136(10):1675-85. PubMed ID: 19369398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Spontaneous Tail Movement in Zebrafish Embryos Using a Novel Open-Source MATLAB Application.
    González-Fraga J; Dipp-Alvarez V; Bardullas U
    Zebrafish; 2019 Apr; 16(2):214-216. PubMed ID: 30615594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRAP Analysis of Extracellular Diffusion in Zebrafish Embryos.
    Soh GH; Müller P
    Methods Mol Biol; 2018; 1863():107-124. PubMed ID: 30324594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Locomotor Activity in Zebrafish Larvae Using wrMTrck.
    Selvaraj V; Santhakumar K
    Zebrafish; 2017 Jun; 14(3):287-291. PubMed ID: 28437172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Islet2a function in zebrafish embryos: Mutants and morphants differ in morphologic phenotypes and gene expression.
    Moreno RL; Williams K; Jones KL; Ribera AB
    PLoS One; 2018; 13(6):e0199233. PubMed ID: 29927984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis.
    Habeck H; Odenthal J; Walderich B; Maischein H; Schulte-Merker S;
    Curr Biol; 2002 Aug; 12(16):1405-12. PubMed ID: 12194822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics. Zebrafish--the canonical vertebrate.
    Fishman MC
    Science; 2001 Nov; 294(5545):1290-1. PubMed ID: 11701913
    [No Abstract]   [Full Text] [Related]  

  • 9. Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation.
    Rentzsch F; Zhang J; Kramer C; Sebald W; Hammerschmidt M
    Development; 2006 Mar; 133(5):801-11. PubMed ID: 16439480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotype classification of zebrafish embryos by supervised learning.
    Jeanray N; Marée R; Pruvot B; Stern O; Geurts P; Wehenkel L; Muller M
    PLoS One; 2015; 10(1):e0116989. PubMed ID: 25574849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downregulation of gene expression with negatively charged peptide nucleic acids (PNAs) in zebrafish embryos.
    Wickstrom E; Urtishak KA; Choob M; Tian X; Sternheim N; Cross LM; Rubinstein A; Farber SA
    Methods Cell Biol; 2004; 77():137-58. PubMed ID: 15602910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish chordin-like and chordin are functionally redundant in regulating patterning of the dorsoventral axis.
    Branam AM; Hoffman GG; Pelegri F; Greenspan DS
    Dev Biol; 2010 May; 341(2):444-58. PubMed ID: 20226780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis in zebrafish embryos: removing cells from inappropriate locations.
    Rojo C; González E
    Zebrafish; 2008; 5(1):25-37. PubMed ID: 18361682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated phenotype pattern recognition of zebrafish for high-throughput screening.
    Schutera M; Dickmeis T; Mione M; Peravali R; Marcato D; Reischl M; Mikut R; Pylatiuk C
    Bioengineered; 2016 Jul; 7(4):261-5. PubMed ID: 27285638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of motor rhythms in zebrafish embryos.
    Saint-Amant L
    Prog Brain Res; 2010; 187():47-61. PubMed ID: 21111200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesodermal Wnt expression promotes liver specification.
    Hayes S
    Nat Cell Biol; 2006 Aug; 8(8):789. PubMed ID: 16880811
    [No Abstract]   [Full Text] [Related]  

  • 17. Manipulating mitotic recombination in the zebrafish embryo through RecQ helicases.
    Xie J; Bessling SL; Cooper TK; Dietz HC; McCallion AS; Fisher S
    Genetics; 2007 Jun; 176(2):1339-42. PubMed ID: 17483412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva.
    Granato M; van Eeden FJ; Schach U; Trowe T; Brand M; Furutani-Seiki M; Haffter P; Hammerschmidt M; Heisenberg CP; Jiang YJ; Kane DA; Kelsh RN; Mullins MC; Odenthal J; Nüsslein-Volhard C
    Development; 1996 Dec; 123():399-413. PubMed ID: 9007258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steps during the development of the zebrafish locomotor network.
    Brustein E; Saint-Amant L; Buss RR; Chong M; McDearmid JR; Drapeau P
    J Physiol Paris; 2003 Jan; 97(1):77-86. PubMed ID: 14706693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Touchtone promotes survival of embryonic melanophores in zebrafish.
    Cornell RA; Yemm E; Bonde G; Li W; d'Alençon C; Wegman L; Eisen J; Zahs A
    Mech Dev; 2004 Nov; 121(11):1365-76. PubMed ID: 15454266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.