BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15602882)

  • 1. Photoreceptor structure and development: analyses using GFP transgenes.
    Perkins BD; Fadool JM; Dowling JE
    Methods Cell Biol; 2004; 76():315-31. PubMed ID: 15602882
    [No Abstract]   [Full Text] [Related]  

  • 2. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray analysis of XOPS-mCFP zebrafish retina identifies genes associated with rod photoreceptor degeneration and regeneration.
    Morris AC; Forbes-Osborne MA; Pillai LS; Fadool JM
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2255-66. PubMed ID: 21217106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a rod photoreceptor mosaic revealed in transgenic zebrafish.
    Fadool JM
    Dev Biol; 2003 Jun; 258(2):277-90. PubMed ID: 12798288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors.
    Kennedy BN; Vihtelic TS; Checkley L; Vaughan KT; Hyde DR
    J Biol Chem; 2001 Apr; 276(17):14037-43. PubMed ID: 11278688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of rod photoreceptor development using GFP-transgenic zebrafish.
    Hamaoka T; Takechi M; Chinen A; Nishiwaki Y; Kawamura S
    Genesis; 2002 Nov; 34(3):215-20. PubMed ID: 12395387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin promoter-EGFP fusion transgene expression in photoreceptor neurons of retina and pineal complex in mice.
    Ichsan AM; Kato I; Yoshida T; Takasawa K; Hayasaka S; Hiraga K
    Neurosci Lett; 2005 May; 379(2):138-43. PubMed ID: 15823431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish.
    Vihtelic TS; Soverly JE; Kassen SC; Hyde DR
    Exp Eye Res; 2006 Apr; 82(4):558-75. PubMed ID: 16199033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina.
    He L; Campbell ML; Srivastava D; Blocker YS; Harris JR; Swaroop A; Fox DA
    Mol Vis; 1998 Dec; 4():32. PubMed ID: 9873070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor structure and development analyses using GFP transgenes.
    Perkins BD; Fadool JM
    Methods Cell Biol; 2010; 100():205-18. PubMed ID: 21111218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronizing multiphasic circadian rhythms of rhodopsin promoter expression in rod photoreceptor cells.
    Yu CJ; Gao Y; Li P; Li L
    J Exp Biol; 2007 Feb; 210(Pt 4):676-84. PubMed ID: 17267653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina.
    Chesneau A; Bronchain O; Perron M
    Methods Mol Biol; 2018; 1865():133-146. PubMed ID: 30151764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographical regulation of cone and rod opsin genes: parallel, position dependent levels of transcription.
    van Ginkel PR; Timmers AM; Szél A; Hauswirth WW
    Brain Res Dev Brain Res; 1995 Oct; 89(1):146-9. PubMed ID: 8575088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogeny of cone photoreceptor mosaics in zebrafish.
    Allison WT; Barthel LK; Skebo KM; Takechi M; Kawamura S; Raymond PA
    J Comp Neurol; 2010 Oct; 518(20):4182-95. PubMed ID: 20878782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.