These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 15603120)
1. Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation. Liebler M; Ginter S; Dreyer T; Riedlinger RE J Acoust Soc Am; 2004 Nov; 116(5):2742-50. PubMed ID: 15603120 [TBL] [Abstract][Full Text] [Related]
2. Frequency-domain wave equation and its time-domain solutions in attenuating media. Sushilov NV; Cobbold RS J Acoust Soc Am; 2004 Apr; 115(4):1431-6. PubMed ID: 15101620 [TBL] [Abstract][Full Text] [Related]
3. Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media. Norton GV; Novarini JC J Acoust Soc Am; 2003 Jun; 113(6):3024-31. PubMed ID: 12822773 [TBL] [Abstract][Full Text] [Related]
4. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids. Ginter S; Liebler M; Steiger E; Dreyer T; Riedlinger RE J Acoust Soc Am; 2002 May; 111(5 Pt 1):2049-59. PubMed ID: 12051425 [TBL] [Abstract][Full Text] [Related]
5. Effects of nonlinear ultrasound propagation on high intensity brain therapy. Pinton G; Aubry JF; Fink M; Tanter M Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833 [TBL] [Abstract][Full Text] [Related]
6. Analytical time-domain Green's functions for power-law media. Kelly JF; McGough RJ; Meerschaert MM J Acoust Soc Am; 2008 Nov; 124(5):2861-72. PubMed ID: 19045774 [TBL] [Abstract][Full Text] [Related]
7. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. Chen W; Holm S J Acoust Soc Am; 2004 Apr; 115(4):1424-30. PubMed ID: 15101619 [TBL] [Abstract][Full Text] [Related]
9. Time-domain analysis of power law attenuation in space-fractional wave equations. Zhao X; McGough RJ J Acoust Soc Am; 2018 Jul; 144(1):467. PubMed ID: 30075676 [TBL] [Abstract][Full Text] [Related]
10. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results. Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840 [TBL] [Abstract][Full Text] [Related]
11. Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations. Zhao X; McGough RJ J Acoust Soc Am; 2016 May; 139(5):3021. PubMed ID: 27250193 [TBL] [Abstract][Full Text] [Related]
12. A heterogeneous nonlinear attenuating full-wave model of ultrasound. Pinton GF; Dahl J; Rosenzweig S; Trahey GE IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208 [TBL] [Abstract][Full Text] [Related]
13. A unifying fractional wave equation for compressional and shear waves. Holm S; Sinkus R J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999 [TBL] [Abstract][Full Text] [Related]
14. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model. Vanhille C; Campos-Pozuelo C Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254 [TBL] [Abstract][Full Text] [Related]
16. Influence of ribs on the nonlinear sound field of therapeutic ultrasound. Li JL; Liu XZ; Zhang D; Gong XF Ultrasound Med Biol; 2007 Sep; 33(9):1413-20. PubMed ID: 17630093 [TBL] [Abstract][Full Text] [Related]
17. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results. Wójcik J; Kujawska T; Nowicki A; Lewin PA Ultrasonics; 2008 Dec; 48(8):707-15. PubMed ID: 18474387 [TBL] [Abstract][Full Text] [Related]
19. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Holm S; Näsholm SP Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745 [TBL] [Abstract][Full Text] [Related]
20. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code. Qiao S; Jackson E; Coussios CC; Cleveland RO J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]