These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15603120)

  • 21. Estimation of Tissue Attenuation from Ultrasonic B-Mode Images-Spectral-Log-Difference and Method-of-Moments Algorithms Compared.
    Brandner DM; Cai X; Foiret J; Ferrara KW; Zagar BG
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal processing strategies that improve performance and understanding of the quantitative ultrasound SPECTRAL FIT algorithm.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1808-19. PubMed ID: 16240839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media.
    Voinovich P; Merlen A
    J Acoust Soc Am; 2005 Dec; 118(6):3491-8. PubMed ID: 16419796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal dosage of ultrasound contrast agent for ultrasound surgery: thermal effect of linear plane wave.
    Seo J
    Ultrasonics; 2009 Jun; 49(6-7):565-8. PubMed ID: 19345389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound.
    Hallaj IM; Cleveland RO
    J Acoust Soc Am; 1999 May; 105(5):L7-12. PubMed ID: 10335650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modified Szabo's wave equation models for lossy media obeying frequency power law.
    Chen W; Holm S
    J Acoust Soc Am; 2003 Nov; 114(5):2570-4. PubMed ID: 14649993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-domain simulation of ultrasound propagation with fractional Laplacians for lossy-medium biological tissues with complicated geometries.
    Zhang J; Zheng ZC; Ke G
    J Acoust Soc Am; 2019 Jan; 145(1):589. PubMed ID: 30710970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approximate analytical time-domain Green's functions for the Caputo fractional wave equation.
    Kelly JF; McGough RJ
    J Acoust Soc Am; 2016 Aug; 140(2):1039. PubMed ID: 27586735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams.
    Remenieras JP; Bou Matar O; Labat V; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):305-11. PubMed ID: 10829679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method.
    Treeby BE; Tumen M; Cox BT
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):363-70. PubMed ID: 22003638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams.
    Albin N; Bruno OP; Cheung TY; Cleveland RO
    J Acoust Soc Am; 2012 Oct; 132(4):2371-87. PubMed ID: 23039433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New approaches to nonlinear diffractive field propagation.
    Christopher PT; Parker KJ
    J Acoust Soc Am; 1991 Jul; 90(1):488-99. PubMed ID: 1880298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractal ladder models and power law wave equations.
    Kelly JF; McGough RJ
    J Acoust Soc Am; 2009 Oct; 126(4):2072-81. PubMed ID: 19813816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.
    Demi L; van Dongen KW; Verweij MD
    J Acoust Soc Am; 2011 Mar; 129(3):1221-30. PubMed ID: 21428485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
    Le Crom B; Castaings M
    J Acoust Soc Am; 2010 Apr; 127(4):2220-30. PubMed ID: 20370003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On a time-domain representation of the Kramers-Kronig dispersion relations.
    Waters KR; Hughes MS; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2114-9. PubMed ID: 11108348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.