These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 15603120)
41. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur. Cassereau D; Nauleau P; Bendjoudi A; Minonzio JG; Laugier P; Bossy E; Grimal Q Ultrasonics; 2014 Jul; 54(5):1197-202. PubMed ID: 23849752 [TBL] [Abstract][Full Text] [Related]
42. Simulation and measurement of nonlinear behavior in a high-power test cell. Harvey G; Gachagan A IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):808-19. PubMed ID: 21507758 [TBL] [Abstract][Full Text] [Related]
43. Improved description of shock wave evolution in media with frequency power law dependent attenuation. Wallace KD; Holland MR; Miller JG J Acoust Soc Am; 2001 May; 109(5 Pt 1):2263-5. PubMed ID: 11386578 [No Abstract] [Full Text] [Related]
45. A multiband approach for accurate numerical simulation of frequency dependent ultrasonic wave propagation in the time domain. Egerton JS; Lowe MJS; Huthwaite P; Halai HV J Acoust Soc Am; 2017 Sep; 142(3):1270. PubMed ID: 28964053 [TBL] [Abstract][Full Text] [Related]
46. Comment on "Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones," [J. Acoust. Soc. Am. 121(6), 3907-3921 (2007)]. Guo X; Zhang D; Yang D; Gong X; Wu J J Acoust Soc Am; 2008 Jun; 123(6):4047-50. PubMed ID: 18537356 [TBL] [Abstract][Full Text] [Related]
47. Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method. Bastard C; Remeniéras JP; Callé S; Sandrin L J Acoust Soc Am; 2009 Oct; 126(4):2108-16. PubMed ID: 19813820 [TBL] [Abstract][Full Text] [Related]
48. Models of ultrasonic wave propagation in epoxy materials. Challis RE; Blarel F; Unwin ME; Paul J; Guo X IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1225-37. PubMed ID: 19574130 [TBL] [Abstract][Full Text] [Related]
49. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. Zhang B; Chen T; Zhao Y; Zhang W; Zhu J J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873 [TBL] [Abstract][Full Text] [Related]
50. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. Ginter S Ultrasonics; 2000 Jul; 37(10):693-6. PubMed ID: 10950353 [TBL] [Abstract][Full Text] [Related]
51. Computation of nonlinear ultrasound fields using a linearized contrast source method. Verweij MD; Demi L; van Dongen KW J Acoust Soc Am; 2013 Aug; 134(2):1442-53. PubMed ID: 23927184 [TBL] [Abstract][Full Text] [Related]
52. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method. Rosado-Mendez IM; Nam K; Hall TJ; Zagzebski JA Ultrason Imaging; 2013 Jul; 35(3):214-34. PubMed ID: 23858055 [TBL] [Abstract][Full Text] [Related]
53. Simulation of ultrasound two-dimensional array transducers using a frequency domain model. Rao M; Varghese T; Zagzebski JA Med Phys; 2008 Jul; 35(7):3162-9. PubMed ID: 18697541 [TBL] [Abstract][Full Text] [Related]
54. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN. Jiang H; Liu F; Meerschaert MM; McGough RJ Electron J Math Anal Appl; 2013 Jan; 1(1):55-66. PubMed ID: 26425384 [TBL] [Abstract][Full Text] [Related]
55. Finite-difference and finite-volume methods for nonlinear standing ultrasonic waves in fluid media. Vanhille C; Conde C; Campos-Pozuelo C Ultrasonics; 2004 Apr; 42(1-9):315-8. PubMed ID: 15047304 [TBL] [Abstract][Full Text] [Related]
56. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. Treeby BE; Jaros J; Rendell AP; Cox BT J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907 [TBL] [Abstract][Full Text] [Related]
57. Cochlear macromechanics: time domain solutions. Allen JB; Sondhi MM J Acoust Soc Am; 1979 Jul; 66(1):123-32. PubMed ID: 489828 [TBL] [Abstract][Full Text] [Related]
58. Modeling of pulsed finite-amplitude focused sound beams in time domain. Tavakkoli J; Cathignol D; Souchon R; Sapozhnikov OA J Acoust Soc Am; 1998 Oct; 104(4):2061-72. PubMed ID: 10491689 [TBL] [Abstract][Full Text] [Related]
59. Ultrasound attenuation estimation using the LMSE filters and the median filter. Jang HS; Lee MH; Park SB Ultrasound Med Biol; 1988; 14(1):51-8. PubMed ID: 3347963 [TBL] [Abstract][Full Text] [Related]
60. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics. Treeby BE; Cox BT; Zhang EZ; Patch SK; Beard PC IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1666-76. PubMed ID: 19686982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]