These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 15603147)

  • 1. Analytic treatment of the compound action potential: estimating the summed post-stimulus time histogram and unit response.
    Chertoff ME
    J Acoust Soc Am; 2004 Nov; 116(5):3022-30. PubMed ID: 15603147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compound action potential and cochlear microphonic extracted from electrocochleographic responses to condensation or rarefaction clicks.
    Arslan E; Santarelli R; Sparacino G; Sella G
    Acta Otolaryngol; 2000 Mar; 120(2):192-6. PubMed ID: 11603770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting auditory nerve survival using the compound action potential.
    Earl BR; Chertoff ME
    Ear Hear; 2010 Feb; 31(1):7-21. PubMed ID: 19838117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials.
    Lichtenhan JT; Chertoff ME
    J Acoust Soc Am; 2008 Apr; 123(4):2200-12. PubMed ID: 18397026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping auditory nerve firing density using high-level compound action potentials and high-pass noise masking.
    Earl BR; Chertoff ME
    J Acoust Soc Am; 2012 Jan; 131(1):337-52. PubMed ID: 22280596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytic approach to identifying the sources of the low-frequency round window cochlear response.
    Kamerer AM; Chertoff ME
    Hear Res; 2019 Apr; 375():53-65. PubMed ID: 30808536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing hair cell from neural potentials recorded at the round window.
    Forgues M; Koehn HA; Dunnon AK; Pulver SH; Buchman CA; Adunka OF; Fitzpatrick DC
    J Neurophysiol; 2014 Feb; 111(3):580-93. PubMed ID: 24133227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss.
    Stronks HC; Versnel H; Prijs VF; Grolman W; Klis SF
    Hear Res; 2011 Feb; 272(1-2):95-107. PubMed ID: 21044671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the cochlear nerve compound action potential: sharply defined frequency-intensity domains bordering the tuning curve.
    Henry KR
    Hear Res; 1991 Nov; 56(1-2):239-45. PubMed ID: 1769917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of noise exposure on the parameters of a convolution model of the compound action potential.
    Chertoff ME; Lichtenhan JT; Tourtillott BM; Esau KS
    J Acoust Soc Am; 2008 Oct; 124(4):2174-85. PubMed ID: 19062857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone.
    Choi CH; Chertoff ME; Bian L; Lerner D
    J Acoust Soc Am; 2004 Nov; 116(5):2996-3007. PubMed ID: 15603145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latency and amplitude tuning curves of the N1 and N2 components of the cochlear nerve compound action potential.
    Henry KR; Sweet RJ; Price JM
    Audiology; 1990; 29(3):122-34. PubMed ID: 2383212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing non-linearity in the cochlear microphonic using the instantaneous frequency.
    Chertoff ME; Lerner D; Amani-Taleshi D; Nagai Y
    Hear Res; 2000 Jul; 145(1-2):190-202. PubMed ID: 10867292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Correlation of the latency shift and brain stem potentials in basocochlear hearing loss and the time course of the click stimulus-induced evoked wave in the cochlea].
    Janssen T; Steinhoff HJ; Böhnke F
    Laryngorhinootologie; 1989 Jul; 68(7):379-82. PubMed ID: 2765050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the generation of the cochlear microphonic.
    Ayat M; Teal PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7168-71. PubMed ID: 24111398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latency and amplitude compound action potential tuning curves for tonal stimuli with nontraditional envelopes.
    Henry KR; Sweet RJ; Szymanski MD
    Audiology; 1991; 30(1):33-46. PubMed ID: 2059168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.