BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15603813)

  • 1. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors.
    Lavik EB; Klassen H; Warfvinge K; Langer R; Young MJ
    Biomaterials; 2005 Jun; 26(16):3187-96. PubMed ID: 15603813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space.
    Tao S; Young C; Redenti S; Zhang Y; Klassen H; Desai T; Young MJ
    Lab Chip; 2007 Jun; 7(6):695-701. PubMed ID: 17538710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats.
    Qiu G; Seiler MJ; Mui C; Arai S; Aramant RB; de Juan E; Sadda S
    Exp Eye Res; 2005 Apr; 80(4):515-25. PubMed ID: 15781279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of micropatterned PLGA-PHBV8 blend films as temporary scaffolds for photoreceptor cells.
    Tezcaner A; Hicks D
    J Biomed Mater Res A; 2008 Jul; 86(1):170-81. PubMed ID: 17957722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting nestin expression in retinal progenitor cells in vitro and after transplantation in vivo.
    Qiu G; Seiler MJ; Thomas BB; Wu K; Radosevich M; Sadda SR
    Exp Eye Res; 2007 Jun; 84(6):1047-59. PubMed ID: 17451684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients.
    Klassen H; Kiilgaard JF; Zahir T; Ziaeian B; Kirov I; Scherfig E; Warfvinge K; Young MJ
    Stem Cells; 2007 May; 25(5):1222-30. PubMed ID: 17218397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells.
    Yao J; Tucker BA; Zhang X; Checa-Casalengua P; Herrero-Vanrell R; Young MJ
    Biomaterials; 2011 Feb; 32(4):1041-50. PubMed ID: 21030072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells.
    Tomita M; Mori T; Maruyama K; Zahir T; Ward M; Umezawa A; Young MJ
    Stem Cells; 2006 Oct; 24(10):2270-8. PubMed ID: 17008430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds.
    Xiong Y; Zeng YS; Zeng CG; Du BL; He LM; Quan DP; Zhang W; Wang JM; Wu JL; Li Y; Li J
    Biomaterials; 2009 Aug; 30(22):3711-22. PubMed ID: 19375792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat.
    Chacko DM; Rogers JA; Turner JE; Ahmad I
    Biochem Biophys Res Commun; 2000 Feb; 268(3):842-6. PubMed ID: 10679293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow genesis after subcutaneous delivery of rat osteogenic cell-seeded biodegradable scaffolds into nude mice.
    Gomi K; Kanazashi M; Lickorish D; Arai T; Davies JE
    J Biomed Mater Res A; 2004 Dec; 71(4):602-7. PubMed ID: 15499636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of host-graft interactions in vitro.
    Liljekvist-Larsson I; Johansson K
    J Neural Eng; 2007 Sep; 4(3):255-63. PubMed ID: 17873428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold.
    Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M
    Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of progenitor cell/biodegradable MMP2-PLGA polymer constructs to enhance cellular integration and retinal repopulation.
    Tucker BA; Redenti SM; Jiang C; Swift JS; Klassen HJ; Smith ME; Wnek GE; Young MJ
    Biomaterials; 2010 Jan; 31(1):9-19. PubMed ID: 19775744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate.
    Kim H; Suh H; Jo SA; Kim HW; Lee JM; Kim EH; Reinwald Y; Park SH; Min BH; Jo I
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1053-60. PubMed ID: 15922303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.