BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15604007)

  • 1. 3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket.
    Shuxian Z; Wanhua Z; Bingheng L
    Med Eng Phys; 2005 Jan; 27(1):67-74. PubMed ID: 15604007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin temperatures.
    Peery JT; Klute GK; Blevins JJ; Ledoux WR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):336-43. PubMed ID: 17009493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse engineering in CAD model reconstruction of customized artificial joint.
    Lin YP; Wang CT; Dai KR
    Med Eng Phys; 2005 Mar; 27(2):189-93. PubMed ID: 15642515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound imaging in lower limb prosthetics.
    Douglas T; Solomonidis S; Sandham W; Spence W
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):11-21. PubMed ID: 12173735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary investigation into the development of 3-D printing of prosthetic sockets.
    Herbert N; Simpson D; Spence WD; Ion W
    J Rehabil Res Dev; 2005; 42(2):141-6. PubMed ID: 15944878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using computational simulation to aid in the prediction of socket fit: a preliminary study.
    Lee WC; Zhang M
    Med Eng Phys; 2007 Oct; 29(8):923-9. PubMed ID: 17056294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering techniques for cranioplasty: a case study.
    Maravelakis E; David K; Antoniadis A; Manios A; Bilalis N; Papaharilaou Y
    J Med Eng Technol; 2008; 32(2):115-21. PubMed ID: 17852651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for in vivo knee prosthesis wear measurement.
    Short A; Gill HS; Marks B; Waite JC; Kellett CF; Price AJ; O'Connor JJ; Murray DW
    J Biomech; 2005 Feb; 38(2):315-22. PubMed ID: 15598459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: three-dimensional reconstruction of femoral condyle].
    Teng Y; Wang Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jul; 18(4):257-60. PubMed ID: 15323434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and dynamic pressure prediction for prosthetic socket fitting assessment utilising an inverse problem approach.
    Sewell P; Noroozi S; Vinney J; Amali R; Andrews S
    Artif Intell Med; 2012 Jan; 54(1):29-41. PubMed ID: 21963113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic elasticity measurement for prosthetic socket design.
    Kim Y; Kim J; Son H; Choi Y
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1281-1286. PubMed ID: 28813997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket--roles of interface friction and distal-end boundary conditions.
    Zhang M; Mak AF
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):337-46. PubMed ID: 8973960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A smartphone photogrammetry method for digitizing prosthetic socket interiors.
    Hernandez A; Lemaire E
    Prosthet Orthot Int; 2017 Apr; 41(2):210-214. PubMed ID: 27613588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy.
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Yoshikawa H; Tamura S
    IEEE Trans Med Imaging; 2004 May; 23(5):602-12. PubMed ID: 15147013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardware and software considerations in 3D ultrasound imaging of a residual limb.
    He P
    Biomed Sci Instrum; 1997; 33():257-62. PubMed ID: 9731368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images.
    Mahfouz MR; Hoff WA; Komistek RD; Dennis DA
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1561-74. PubMed ID: 14649746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.