These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15604107)

  • 1. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.
    DiBona GF
    Exp Physiol; 2005 Mar; 90(2):159-61. PubMed ID: 15604107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of renal denervation on dynamic autoregulation of renal blood flow.
    DiBona GF; Sawin LL
    Am J Physiol Renal Physiol; 2004 Jun; 286(6):F1209-18. PubMed ID: 14969998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency response of the renal vasculature in congestive heart failure.
    DiBona GF; Sawin LL
    Circulation; 2003 Apr; 107(16):2159-64. PubMed ID: 12695307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsiveness of the renal vasculature: relating electrical stimulation to endogenous nerve activity is problematic.
    Malpas S; Guild SJ; Evans R
    Am J Physiol Renal Physiol; 2003 Mar; 284(3):F594-5; author reply 595-6. PubMed ID: 12556367
    [No Abstract]   [Full Text] [Related]  

  • 5. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney.
    Coote JH
    Exp Physiol; 2005 Mar; 90(2):169-73. PubMed ID: 15604110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of behaviour on sympathetic outflow during sleep and exercise.
    Miki K; Yoshimoto M
    Exp Physiol; 2005 Mar; 90(2):155-8. PubMed ID: 15604111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.
    Schiller AM; Pellegrino PR; Zucker IH
    Auton Neurosci; 2017 May; 204():17-24. PubMed ID: 27514571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats.
    Abdulla MH; Sattar MA; Abdullah NA; Hazim AI; Anand Swarup KR; Rathore HA; Khan MA; Johns EJ
    Auton Autacoid Pharmacol; 2008 Oct; 28(4):95-101. PubMed ID: 18778332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural regulation of renin secretion.
    Kopp UC; DiBona GF
    Semin Nephrol; 1993 Nov; 13(6):543-51. PubMed ID: 8278687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats.
    Koba S; Yoshida T; Hayashi N
    Exp Physiol; 2006 Jan; 91(1):111-9. PubMed ID: 16210449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sympathetically induced renal vasoconstriction during stimulation of mesencephalic locomotor region in rats.
    Koba S; Yoshida T; Hayashi N
    Auton Neurosci; 2005 Aug; 121(1-2):40-6. PubMed ID: 16000260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of renal sympathetic nerves in regulating renovascular responses to angiotensin II in spontaneously hypertensive rats.
    Dubinion JH; Mi Z; Jackson EK
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1330-6. PubMed ID: 16537795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural control of renal circulation.
    Kon V
    Miner Electrolyte Metab; 1989; 15(1-2):33-43. PubMed ID: 2644521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenesis of hypertension in renal failure: role of the sympathetic nervous system and renal afferents.
    Phillips JK
    Clin Exp Pharmacol Physiol; 2005; 32(5-6):415-8. PubMed ID: 15854151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Renal neuroadrenergic effects. Part I. Renal ischemia caused by sympathetic stimulation and risk factors of cadaver donor].
    García Matilla F; García Montes F
    Actas Urol Esp; 1997 Mar; 21(3):236-41. PubMed ID: 9324889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A new proposal on the neural component of the control system of renal blood flow. Analysis using digital simulation].
    Roa LM; Garrachón F; González-Barón S
    Rev Esp Fisiol; 1989 Sep; 45(3):221-6. PubMed ID: 2616868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous endothelins and the response to electrical renal nerve stimulation in anaesthetized rabbits.
    Boesen EI; Anderson WP; Evans RG; Kett MM
    Auton Neurosci; 2007 Mar; 132(1-2):8-15. PubMed ID: 16978927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sympathetic regulation of the renal functions in rats reciprocally congenic for chromosome 1 blood pressure quantitative trait locus.
    Wang T; Nabika T; Notsu Y; Takabatake T
    Hypertens Res; 2008 Mar; 31(3):561-8. PubMed ID: 18497477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized neural control of blood flow in the renal cortex of the anaesthetized baboon.
    Spelman FA; Oberg PA; Astley C
    Acta Physiol Scand; 1986 Aug; 127(4):437-41. PubMed ID: 2944352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acute unilateral renal denervation on renal hemodynamics in spontaneously hypertensive rats.
    Abdulla MH; Sattar MA; Salman IM; Abdullah NA; Ameer OZ; Khan MA; Johns EJ
    Auton Autacoid Pharmacol; 2008; 28(2-3):87-94. PubMed ID: 18598290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.