These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15604668)

  • 1. Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches.
    Colditz F; Nyamsuren O; Niehaus K; Eubel H; Braun HP; Krajinski F
    Plant Mol Biol; 2004 May; 55(1):109-20. PubMed ID: 15604668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.
    Colditz F; Braun HP; Jacquet C; Niehaus K; Krajinski F
    Plant Mol Biol; 2005 Oct; 59(3):387-406. PubMed ID: 16235107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches.
    Colditz F; Niehaus K; Krajinski F
    Planta; 2007 Jun; 226(1):57-71. PubMed ID: 17237953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)-elicited and -inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach.
    Trapphoff T; Beutner C; Niehaus K; Colditz F
    Mol Plant Microbe Interact; 2009 Apr; 22(4):421-36. PubMed ID: 19271957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.
    Schenkluhn L; Hohnjec N; Niehaus K; Schmitz U; Colditz F
    J Proteomics; 2010 Feb; 73(4):753-68. PubMed ID: 19895911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen.
    Yadav H; Dreher D; Athmer B; Porzel A; Gavrin A; Baldermann S; Tissier A; Hause B
    Plant Physiol; 2019 Jul; 180(3):1598-1613. PubMed ID: 31015300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen modulation of Medicago truncatula resistance to Aphanomyces euteiches depends on plant genotype.
    Thalineau E; Fournier C; Gravot A; Wendehenne D; Jeandroz S; Truong HN
    Mol Plant Pathol; 2018 Mar; 19(3):664-676. PubMed ID: 28296004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula.
    Pilet-Nayel ML; Prospéri JM; Hamon C; Lesné A; Lecointe R; Le Goff I; Hervé M; Deniot G; Delalande M; Huguet T; Jacquet C; Baranger A
    Phytopathology; 2009 Feb; 99(2):203-8. PubMed ID: 19159312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.
    Djébali N; Jauneau A; Ameline-Torregrosa C; Chardon F; Jaulneau V; Mathé C; Bottin A; Cazaux M; Pilet-Nayel ML; Baranger A; Aouani ME; Esquerré-Tugayé MT; Dumas B; Huguet T; Jacquet C
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1043-55. PubMed ID: 19656040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula.
    Zhang H; Franken P
    Mycorrhiza; 2014 Aug; 24(6):419-30. PubMed ID: 24419810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.
    Nars A; Lafitte C; Chabaud M; Drouillard S; Mélida H; Danoun S; Le Costaouëc T; Rey T; Benedetti J; Bulone V; Barker DG; Bono JJ; Dumas B; Jacquet C; Heux L; Fliegmann J; Bottin A
    PLoS One; 2013; 8(9):e75039. PubMed ID: 24086432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza.
    Amiour N; Recorbet G; Robert F; Gianinazzi S; Dumas-Gaudot E
    Mol Plant Microbe Interact; 2006 Sep; 19(9):988-97. PubMed ID: 16941903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis highlights preformed defences and signalling pathways controlled by the prAe1 quantitative trait locus (QTL), conferring partial resistance to Aphanomyces euteiches in Medicago truncatula.
    Badis Y; Bonhomme M; Lafitte C; Huguet S; Balzergue S; Dumas B; Jacquet C
    Mol Plant Pathol; 2015 Dec; 16(9):973-86. PubMed ID: 25765337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches.
    Bonhomme M; André O; Badis Y; Ronfort J; Burgarella C; Chantret N; Prosperi JM; Briskine R; Mudge J; Debéllé F; Navier H; Miteul H; Hajri A; Baranger A; Tiffin P; Dumas B; Pilet-Nayel ML; Young ND; Jacquet C
    New Phytol; 2014 Mar; 201(4):1328-1342. PubMed ID: 24283472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches?
    Hilou A; Zhang H; Franken P; Hause B
    Mycorrhiza; 2014 Jan; 24(1):45-54. PubMed ID: 23812608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A local score approach improves GWAS resolution and detects minor QTL: application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates.
    Bonhomme M; Fariello MI; Navier H; Hajri A; Badis Y; Miteul H; Samac DA; Dumas B; Baranger A; Jacquet C; Pilet-Nayel ML
    Heredity (Edinb); 2019 Oct; 123(4):517-531. PubMed ID: 31138867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.
    Rey T; Nars A; Bonhomme M; Bottin A; Huguet S; Balzergue S; Jardinaud MF; Bono JJ; Cullimore J; Dumas B; Gough C; Jacquet C
    New Phytol; 2013 May; 198(3):875-886. PubMed ID: 23432463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula.
    Lei Z; Elmer AM; Watson BS; Dixon RA; Mendes PJ; Sumner LW
    Mol Cell Proteomics; 2005 Nov; 4(11):1812-25. PubMed ID: 16048909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways.
    Gaulin E; Madoui MA; Bottin A; Jacquet C; Mathé C; Couloux A; Wincker P; Dumas B
    PLoS One; 2008 Mar; 3(3):e1723. PubMed ID: 18320043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An oomycete effector targets a plant RNA helicase involved in root development and defense.
    Camborde L; Kiselev A; Pel MJC; Le Ru A; Jauneau A; Pouzet C; Dumas B; Gaulin E
    New Phytol; 2022 Mar; 233(5):2232-2248. PubMed ID: 34913494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.