BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 15604746)

  • 21. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members.
    Tsuchisaka A; Theologis A
    Plant Physiol; 2004 Oct; 136(2):2982-3000. PubMed ID: 15466221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses.
    Wang NN; Shih MC; Li N
    J Exp Bot; 2005 Mar; 56(413):909-20. PubMed ID: 15699063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors.
    Schwalm K; Aloni R; Langhans M; Heller W; Stich S; Ullrich CI
    Planta; 2003 Dec; 218(2):163-78. PubMed ID: 14523649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development.
    Lee S; Korban SS
    Planta; 2002 Aug; 215(4):689-93. PubMed ID: 12172853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.
    Han W; Rong H; Zhang H; Wang MH
    Biochem Biophys Res Commun; 2009 Jan; 378(4):695-700. PubMed ID: 19056344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate.
    Miyawaki K; Matsumoto-Kitano M; Kakimoto T
    Plant J; 2004 Jan; 37(1):128-38. PubMed ID: 14675438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis.
    Bao F; Shen J; Brady SR; Muday GK; Asami T; Yang Z
    Plant Physiol; 2004 Apr; 134(4):1624-31. PubMed ID: 15047895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root.
    Oono Y; Ooura C; Rahman A; Aspuria ET; Hayashi K; Tanaka A; Uchimiya H
    Plant Physiol; 2003 Nov; 133(3):1135-47. PubMed ID: 14526108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation.
    Fu L; Wang M; Han B; Tan D; Sun X; Zhang J
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress.
    Ezaki B; Suzuki M; Motoda H; Kawamura M; Nakashima S; Matsumoto H
    Plant Physiol; 2004 Apr; 134(4):1672-82. PubMed ID: 15047894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning.
    van Hengel AJ; Barber C; Roberts K
    Plant J; 2004 Jul; 39(1):70-83. PubMed ID: 15200643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots.
    Subramanian S; Hu X; Lu G; Odelland JT; Yu O
    Plant Mol Biol; 2004 Mar; 54(5):623-39. PubMed ID: 15356384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids.
    Smith AP; Nourizadeh SD; Peer WA; Xu J; Bandyopadhyay A; Murphy AS; Goldsbrough PB
    Plant J; 2003 Nov; 36(4):433-42. PubMed ID: 14617075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology.
    Gilkerson J; Callis J
    Plant Signal Behav; 2014; 9(10):e972207. PubMed ID: 25482814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses.
    Yang Z; Tian L; Latoszek-Green M; Brown D; Wu K
    Plant Mol Biol; 2005 Jul; 58(4):585-96. PubMed ID: 16021341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize.
    Ponce G; Barlow PW; Feldman LJ; Cassab GI
    Plant Cell Environ; 2005 Jun; 28(6):719-32. PubMed ID: 16010724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbohydrate-binding module of a rice endo-beta-1,4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated.
    Yoshida K; Imaizumi N; Kaneko S; Kawagoe Y; Tagiri A; Tanaka H; Nishitani K; Komae K
    Plant Cell Physiol; 2006 Nov; 47(11):1555-71. PubMed ID: 17056619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis.
    Sivanandan C; Sujatha TP; Prasad AM; Resminath R; Thakare DR; Bhat SR; Srinivasan
    Biochim Biophys Acta; 2005 Dec; 1731(3):202-8. PubMed ID: 16307804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hormonal regulation of tissue-specific ectopic expression of an Arabidopsis endoplasmic reticulum-type omega-3 fatty acid desaturase (FAD3) gene.
    Matsuda O; Watanabe C; Iba K
    Planta; 2001 Oct; 213(6):833-40. PubMed ID: 11722119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine.
    Ivanov A; Kameka A; Pajak A; Bruneau L; Beyaert R; Hernández-Sebastià C; Marsolais F
    Amino Acids; 2012 Jun; 42(6):2307-18. PubMed ID: 21800258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.