These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 15604752)
1. Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Hochholdinger F; Guo L; Schnable PS Plant Mol Biol; 2004 Oct; 56(3):397-412. PubMed ID: 15604752 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783 [TBL] [Abstract][Full Text] [Related]
3. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
4. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Hochholdinger F; Woll K; Guo L; Schnable PS Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731 [TBL] [Abstract][Full Text] [Related]
5. Lateral root development in the maize (Zea mays) lateral rootless1 mutant. Husakova E; Hochholdinger F; Soukup A Ann Bot; 2013 Jul; 112(2):417-28. PubMed ID: 23456690 [TBL] [Abstract][Full Text] [Related]
6. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Dembinsky D; Woll K; Saleem M; Liu Y; Fu Y; Borsuk LA; Lamkemeyer T; Fladerer C; Madlung J; Barbazuk B; Nordheim A; Nettleton D; Schnable PS; Hochholdinger F Plant Physiol; 2007 Nov; 145(3):575-88. PubMed ID: 17766395 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210 [TBL] [Abstract][Full Text] [Related]
10. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N. Yan H; Li K; Ding H; Liao C; Li X; Yuan L; Li C J Plant Physiol; 2011 Jul; 168(10):1067-75. PubMed ID: 21353328 [TBL] [Abstract][Full Text] [Related]
11. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Woll K; Borsuk LA; Stransky H; Nettleton D; Schnable PS; Hochholdinger F Plant Physiol; 2005 Nov; 139(3):1255-67. PubMed ID: 16215225 [TBL] [Abstract][Full Text] [Related]
12. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Shoresh M; Harman GE Plant Physiol; 2008 Aug; 147(4):2147-63. PubMed ID: 18562766 [TBL] [Abstract][Full Text] [Related]
13. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. Jia H; Sun W; Li M; Zhang Z J Proteome Res; 2018 Feb; 17(2):822-833. PubMed ID: 29250956 [TBL] [Abstract][Full Text] [Related]
14. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays). Yu P; Hochholdinger F; Li C Ann Bot; 2015 Oct; 116(5):751-62. PubMed ID: 26346717 [TBL] [Abstract][Full Text] [Related]
15. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Requejo R; Tena M Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037 [TBL] [Abstract][Full Text] [Related]
16. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Porubleva L; Vander Velden K; Kothari S; Oliver DJ; Chitnis PR Electrophoresis; 2001 May; 22(9):1724-38. PubMed ID: 11425228 [TBL] [Abstract][Full Text] [Related]
17. The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Paszkowski U; Boller T Planta; 2002 Feb; 214(4):584-90. PubMed ID: 11925041 [TBL] [Abstract][Full Text] [Related]
18. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. Chen Z; Zhao J; Song J; Han S; Du Y; Qiao Y; Liu Z; Qiao J; Li W; Li J; Wang H; Xing B; Pan Q PLoS One; 2021; 16(1):e0244856. PubMed ID: 33395448 [TBL] [Abstract][Full Text] [Related]
19. [Comparative studies on identification of maize secreted proteome by different analyzing techniques]. Ma W; Frank H; Li CJ Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2762-6. PubMed ID: 21137416 [TBL] [Abstract][Full Text] [Related]
20. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. Alarcón MV; Lloret PG; Martín-Partido G; Salguero J J Plant Physiol; 2016 Mar; 192():105-10. PubMed ID: 26905196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]