BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15604792)

  • 1. Continuous removal of Cr(VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris.
    Humphries AC; Nott KP; Hall LD; Macaskie LE
    Biotechnol Lett; 2004 Oct; 26(19):1529-32. PubMed ID: 15604792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776.
    Humphries AC; Nott KP; Hall LD; Macaskie LE
    Biotechnol Bioeng; 2005 Jun; 90(5):589-96. PubMed ID: 15818565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromate reduction by immobilized palladized sulfate-reducing bacteria.
    Humphries AC; Mikheenko IP; Macaskie LE
    Biotechnol Bioeng; 2006 May; 94(1):81-90. PubMed ID: 16570313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577.
    Mabbett AN; Yong P; Farr JP; Macaskie LE
    Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized Bacillus cereus M(1)(16) in a continuous packed bed column reactor.
    Maiti SK; Bera D; Chattopadhyay P; Ray L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):488-504. PubMed ID: 19333567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions: A system for water treatment.
    Djouider F
    J Hazard Mater; 2012 Jul; 223-224():104-9. PubMed ID: 22595544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads.
    Samuel J; Pulimi M; Paul ML; Maurya A; Chandrasekaran N; Mukherjee A
    Bioresour Technol; 2013 Jan; 128():423-30. PubMed ID: 23201524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of chromium, cadmium, and cobalt from aqueous solution by immobilized living cells of Chryseomonas luteola TEM 05.
    Baysal SH; Onal S; Ozdemir G
    Prep Biochem Biotechnol; 2009; 39(4):419-28. PubMed ID: 19739028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.
    Barrera-Díaz CE; Lugo-Lugo V; Bilyeu B
    J Hazard Mater; 2012 Jul; 223-224():1-12. PubMed ID: 22608208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column: optimization of process variables.
    Hasan SH; Srivastava P; Ranjan D; Talat M
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):567-77. PubMed ID: 19333592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.
    Mabbett AN; Sanyahumbi D; Yong P; Macaskie LE
    Environ Sci Technol; 2006 Feb; 40(3):1015-21. PubMed ID: 16509351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen.
    Hennebel T; Van Nevel S; Verschuere S; De Corte S; De Gusseme B; Cuvelier C; Fitts JP; van der Lelie D; Boon N; Verstraete W
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1435-45. PubMed ID: 21590286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater.
    Singh SK; Bansal A; Jha MK; Dey A
    Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous adsorption and recovery of Cr(VI) in different types of reactors.
    Bai SR; Abraham TE
    Biotechnol Prog; 2005; 21(6):1692-9. PubMed ID: 16321053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum.
    Lakshmanraj L; Gurusamy A; Gobinath MB; Chandramohan R
    J Hazard Mater; 2009 Sep; 169(1-3):1141-5. PubMed ID: 19406568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system.
    Ahmad WA; Zakaria ZA; Khasim AR; Alias MA; Ismail SM
    Bioresour Technol; 2010 Jun; 101(12):4371-8. PubMed ID: 20185301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on anaerobic treatment of wastewater containing hexavalent chromium.
    Xu YB; Xiao HH; Sun SY
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):574-9. PubMed ID: 15909347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.