BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15604792)

  • 21. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.
    Klonowska A; Clark ME; Thieman SB; Giles BJ; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1007-16. PubMed ID: 18265973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of Cr(VI) from water using biomass of Aeromonas hydrophila: central composite design for optimization of process variables.
    Ranjan D; Srivastava P; Talat M; Hasan SH
    Appl Biochem Biotechnol; 2009 Sep; 158(3):524-39. PubMed ID: 19031053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.
    Sundar K; Sadiq IM; Mukherjee A; Chandrasekaran N
    J Hazard Mater; 2011 Nov; 196():44-51. PubMed ID: 21924829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp.
    Reddad Z; Gerente C; Andres Y; Le Cloirec P
    Environ Technol; 2003 Feb; 24(2):257-64. PubMed ID: 12666794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy.
    Macaskie LE; Baxter-Plant VS; Creamer NJ; Humphries AC; Mikheenko IP; Mikheenko PM; Penfold DW; Yong P
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):76-9. PubMed ID: 15667270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579.
    Mabbett AN; Lloyd JR; Macaskie LE
    Biotechnol Bioeng; 2002 Aug; 79(4):389-97. PubMed ID: 12115402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling Cr(VI) removal by a combined carbon-activated sludge system.
    Orozco AM; Contreras EM; Zaritzky NE
    J Hazard Mater; 2008 Jan; 150(1):46-52. PubMed ID: 17543453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste--rice straw.
    Gao H; Liu Y; Zeng G; Xu W; Li T; Xia W
    J Hazard Mater; 2008 Jan; 150(2):446-52. PubMed ID: 17574737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cr(VI) removal from aqueous solution by dried activated sludge biomass.
    Wu J; Zhang H; He PJ; Yao Q; Shao LM
    J Hazard Mater; 2010 Apr; 176(1-3):697-703. PubMed ID: 20006428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.
    Murphy V; Hughes H; McLoughlin P
    J Hazard Mater; 2009 Jul; 166(1):318-26. PubMed ID: 19121898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test.
    Boni MR; Sbaffoni S
    J Hazard Mater; 2009 Jul; 166(2-3):1087-95. PubMed ID: 19153005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies.
    Goulhen F; Gloter A; Guyot F; Bruschi M
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):892-7. PubMed ID: 16896506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction.
    Orozco AM; Contreras EM; Zaritzky NE
    Bioresour Technol; 2011 Feb; 102(3):2495-502. PubMed ID: 21123053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological Cr(VI) removal using bio-filters and constructed wetlands.
    Michailides MK; Sultana MY; Tekerlekopoulou AG; Akratos CS; Vayenas DV
    Water Sci Technol; 2013; 68(10):2228-33. PubMed ID: 24292472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.